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Model Assumption Violations in Bayesian Latent Mediation Analysis: An 
Exploration of Bayesian SEM Fit Indices and PPP

Haiyan Liu , Ihnwhi Heo , Aleksandr Ivanov, and Sarah Depaoli 

University of California 

ABSTRACT 
This study investigates the effectiveness of Bayesian approximate fit indices and the posterior predict
ive p-value (PPP) in identifying model assumption violations in latent mediation analysis. We investi
gate three common forms of model-assumption violations: (1) errors in the measurement model of 
the mediator, (2) misspecifications in the measurement model of confounders, and (3) the omission of 
confounders. Additionally, we evaluate the sensitivity of these fit indices to prior specifications, com
paring diffuse priors with weakly informative priors. Our findings demonstrate that BRMSEA, BCFI, BTLI, 
Ĉ; Ĉadj; and PPP effectively detect misfit with high certainty when sample size is large. Severe misspe
cifications, such as using standardized total scores for mediators, lead to significant misfit detected by 
all indices. Including true confounders mitigates the impact of mediator measurement model misspeci
fications, making these misfits more challenging to detect. Measurement model misspecifications for 
confounders of the mediator-to-outcome path result in detectable misfit using all indices. 
Furthermore, all fit indices effectively identify omitted confounders affecting the mediator-to-outcome 
path, particularly when the confounding effect is moderate or strong. Weakly informative priors have 
little impact on the variability of the fit indices. These results highlight the utility of Bayesian approxi
mate fit indices and PPP in diagnosing model assumption violations in latent mediation analysis.

KEYWORDS 
Bayesian fit indices; latent 
mediation analysis; model 
fit; model misspecification; 
omitting confounders   

1. Introduction

Mediation analysis is a common framework used to explore 
and quantify how an independent variable influences a 
dependent variable (Baron & Kenny, 1986; Hayes, 2009). 
This analytical approach has gained increasing popularity 
across various research disciplines, including epidemiology, 
psychology, sociology, and related fields, due to its ability to 
untangle the underlying mechanisms of observed relation
ships (e.g., Fritz & MacKinnon, 2007; Richiardi et al., 2013). 
The core objective of mediation analysis is to determine 
whether the association between two variables is due, wholly 
or in part, to a third variable (i.e., M) that transmits the 
effect of the independent variable (i.e., X) on the dependent 
variable (i.e., Y; MacKinnon, 2012; MacKinnon et al., 2007). 
By identifying mediators, researchers can gain deeper 
insights into the causal pathways and processes that link 
independent and dependent variables, thus moving beyond 
mere associations to uncover potential causal mechanisms.

The mediation analysis typically involves decomposing an 
independent variable’s total effect on a dependent variable 
into direct and indirect effects (MacKinnon, 2012). The dir
ect effect represents the influence of the independent 
variable on the dependent variable that is not mediated by 
the third variable, while the indirect effect quantifies the 

pathway through the mediator. This decomposition is often 
conducted using regression-based approaches, where the 
relationships among the independent variable, mediator, 
and dependent variable are examined through a series of 
regression equations (Liu et al., 2021; Preacher & Kelley, 
2011). However, it is important to recognize that obtaining 
a significant indirect effect in a tri-variate regression system 
does not necessarily confirm mediation. This significant 
indirect effect could also result from potential confounding 
factors, which may bias the estimates of the mediation effect 
(MacKinnon et al., 2000; Sweet, 2019; Valeri & 
VanderWeele, 2013). To draw valid causal inferences, it is 
essential to establish a theoretical basis for the causal path
way from X to M to Y and to consider potential confound
ers that may influence the relationships among these 
variables (Imai et al., 2010; Pearl, 2014). Moreover, the vari
ables X, M, and Y should be measured without error to 
ensure accurate estimates. Recently, Liu and Wang (2021) 
systematically investigated the impact of the co-occurrence 
of measurement error and the omission of confounders on 
statistical inference in the simple mediation model without 
latent variables within the frequentist framework.

In the social and behavioral sciences, researchers often 
deal with variables that are not directly observable, such as 
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the teacher’s role, students’ emotions, and academic per
formance (Bollen, 1989). Measurement scales are typically 
employed to quantify these psychological constructs, involv
ing multiple items or questions designed to capture different 
facets of a particular construct. However, these latent con
structs are often measured with error. Confirmatory factor 
analysis (CFA) is widely used to gain insights into the struc
ture of indicator data and latent traits by analyzing indicator 
data (Cattell, 1952). Importantly, CFA models account for 
measurement error, ensuring that the relationships between 
observed indicators and latent constructs are accurately rep
resented, thus providing a more reliable assessment of the 
underlying constructs.

Latent mediation modeling is a framework that integrates 
latent variables into mediation pathways (Finch et al., 1997; 
Mio�cevi�c, 2019). A typical latent mediation model comprises 
two key components: a measurement model and a structural 
model. The measurement model depicts the relationships 
between latent variables and their observable indicators, 
while the structural model captures direct and indirect 
effects among the latent variables. Latent mediation analysis 
is commonly conducted within the structural equation mod
eling (SEM) framework, enabling the simultaneous assess
ment of both the measurement and structural models. A 
latent mediation model can be estimated using various stat
istical approaches, including frequentist and Bayesian meth
ods. Finch et al. (1997) investigated bias in estimating 
indirect effects and associated standard errors across various 
estimators within the frequentist framework. In a Bayesian 
context, Mio�cevi�c et al. (2021) examined the roles of differ
ent types of priors on the parameter estimates for latent 
mediation models when the true model was fitted.

Accurately determining indirect and direct effects in a 
latent mediation model depends on meeting key assump
tions. Specifically, it assumes the absence of unmeasured 
confounders influencing the relationships between the inde
pendent, mediator, and outcome variables, which is also 
required for the simple mediation analysis (Liu et al., 2021; 
VanderWeele, 2015). Additionally, there should be no mis
specification in the measurement model of the latent varia
bles, and the latent and manifest variables are assumed to 
be normally distributed, as in a traditional SEM model (Du 
& Bentler, 2022; Tong et al., 2014). These assumptions 
ensure that the specified structural and measurement com
ponents accurately reflect the underlying processes. 
However, these assumptions are easily violated in practice.

Deviation from these assumptions can introduce bias and 
compromise the validity of the inferred effects, underscoring 
the importance of careful consideration and validation in 
latent mediation analysis (Liu et al., 2025). Finch et al. 
(1997) explored how the degree of nonnormality in meas
ured variables impacts the accuracy of model parameter esti
mates. Recently, Zhang and Wang (2024) proposed 
mitigating the consequences of measurement error and 
omitted confounders by considering the informativeness of 
the confounding effect under the mediation model. They 
concluded that omitting confounders and including the 
wrong latent factor as a mediator led to biased estimates of 

the mediation effect. Discerning measurement model mis
specification and omitting confounders in latent mediation 
analysis remains a fundamental challenge for researchers.

Approximate fit indices for SEM have been extensively 
studied for their sensitivity to model misfit. For example, 
Hu and Bentler (1999) introduced widely used cutoff values 
for fit indices such as RMSEA, Tucker–Lewis Index (TLI), 
Comparative Fit Index (CFI), and Gamma Hat (Ĉ). Fan and 
Sivo (2007) investigated the sensitivity of fit indices to 
model specification and model complexity. Savalei (2012) 
examined the behavior of the root mean square error of 
approximation (RMSEA) under different types of model 
misspecifications in a CFA model. Additionally, Yang et al. 
(2018) evaluated the performance of ten rescaled test statis
tics to reduce the false rejection of correctly specified mod
els. These studies establish a foundation for understanding 
approximate fit indices within the frequentist framework.

Recently, SEM approximate fit indices have been adapted 
into their Bayesian counterparts (Depaoli et al., 2024; 
Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018). 
Hoofs et al. (2018) introduced Bayesian RMSEA and exam
ined its sensitivity to model misspecification and prior spe
cification in Bayesian confirmatory factor analysis (CFA). 
Garnier-Villarreal and Jorgensen (2020) extended this work 
by introducing seven chi-square-based approximate fit indi
ces for Bayesian SEM using diffuse priors. Subsequent stud
ies have further examined the performance of these indices 
across different modeling contexts. For example, Winter and 
Depaoli (2022) explored the influence of prior specification 
on Bayesian fit indices in linear growth curve modeling, 
while Edwards and Konold (2023) evaluated the perform
ance of Bayesian RMSEA, TLI, and CFI in CFA models. 
Heo et al. (2024) compared Bayesian approximate fit indices 
with the posterior predictive p-value (PPP) in detecting 
model knot placements within piecewise growth curve mod
eling. Additionally, Cao et al. (2024) investigated the effect
iveness of BRMSEA, CFI, and TLI in comparison to DIC 
and PPP for detecting structural misspecifications in SEM. 
These studies underscore the growing interest in Bayesian 
approximate fit indices and their applicability in diverse 
modeling frameworks.

Despite the increasing popularity of Bayesian approxi
mate fit indices and the growing interest in latent mediation 
analysis, little research has examined their effectiveness in 
detecting model misspecifications arising from violations of 
key assumptions in latent mediation models. Given the criti
cal role of accurate model specification in mediation ana
lysis, understanding how these fit indices respond to 
assumption violations is essential to ensure valid inferences.

To fill in the current gap, this study systematically evalu
ates the effectiveness of Bayesian approximate fit measures 
and the PPP in detecting violations of model assumptions 
in the latent mediation analysis, including the measurement 
model misspecification and the omission of confounders. 
Specifically, we will compare the widely used Bayesian 
(approximate) fit indices for different types of misspecifica
tions to provide a comprehensive assessment of their sensi
tivity and reliability. The indices examined in this study 
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include Bayesian root mean square error of approximation 
(BRMSEA), Bayesian comparative fit index (BCFI), Bayesian 
Tucker–Lewis index (BTLI), Bayesian Ĉ and Ĉadj; and the 
PPP. These indices are commonly used by applied research
ers and can be extracted from the output of popular SEM 
software, including Mplus and blavaan. Given their acces
sibility and frequent application in empirical research, this 
study provides essential insights into their performance in 
detecting model misspecifications within latent mediation 
models, offering practical guidance for detecting model 
assumption violation in latent mediation analysis.

The remainder of this article is structured as follows. 
First, we introduce the latent mediation analysis frame
work. Next, we discuss relevant Bayesian methods that 
enhance this modeling approach. We then describe our 
simulation design, which incorporates various types of mis
specifications that reflect common specification errors in 
applied latent mediation models. Following this, we present 
the results of the simulation study and provide a discussion 
highlighting key findings, recommendations on the use of 
fit indices, and future methodological research directions 
based on these insights.

2. Latent Mediation Analysis with Confounders

Within social and behavioral research, it is common for 
investigators to focus on unobserved traits and their connec
tions. These unobserved traits are often captured through 
latent factors and are typically measured through measure
ment scales (or questionnaires). One advantage to using a 
latent variable setup is that measurement errors can be dir
ectly modeled within the analysis. The mediation model can 
be naturally extended into the latent variable framework if 
the key variables (e.g., the mediator or outcome) are not 
directly observed. To illustrate a mediation model with 
latent variables, we present the single mediator model with 
latent variables. As introduced by Finch et al. (1997) and 
Mio�cevi�c et al. (2021), the primary latent mediation model 
comprises a measurement model for the independent vari
able, the mediator, and the outcome variable, along with a 
structural model for the indirect and direct effects among 
them. In the current study, we also consider potential latent 
confounders for the paths from the independent variable to 
the mediator and from the mediator to the outcome 
variable.

An example of the latent mediation model with three 
indicators for each latent variable is illustrated in Figure 1.

In this model, n is the latent independent variable, and 
gM and gY are the latent mediator and latent outcome vari
able, respectively. As a critical substantive extension of this 
model, we also consider two latent confounders: fc1 for the 
path between n and gM, and fc2 for the path between gM 
and gY.

The measurement model for the independent latent vari
able n,1 the two confounders fc1 and fc2; and the 

measurement model for the mediator gM
2 and the depend

ent variable gY are described as follows:
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The measurement model for the independent variable n 

and the two confounders has a 9� 3 factor loading matrix 
Kx, with errors di (i ¼ 1, . . . , 9) following independent nor
mal distributions Nð0, r2

di
Þ: The mediator gM and the 

dependent variable gY each have 3 indicators, with a 6� 2 
factor loading matrix Ky, and the error terms ej 

(j ¼ 1, . . . , 6) following independent normal distribu
tions Nð0, r2

ej
Þ:

The mediation path among the latent variables is 
described by the following notation:
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For reference, a is the coefficient linking the independent 
variable n to the mediator gM, b and c’ are the coefficients 
from the mediator gM and the independent variable n to the 
dependent variable gY. The residuals or errors of the paths 
are en; eM and eY, and they follow an independent normal 
distribution with mean 0 and variance parameters r2

n, r2
M;

and r2
Y ; respectively,
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The indirect effect (or mediation effect) is denoted by the 
product of a � b: This indirect effect captures the relation
ship between the independent and dependent variables 

Figure 1. Latent mediation model with three indicators per latent variable. The 
dashed lines indicate either the potential cross-loading or the paths of the 
potential confounders.

1Depending on whether there is a non-zero path from fc1 to n, the independ
ent variable n could be exogenous or endogenous.

2The formulation assumes no cross-loading, but it can be generalized to 
include cross-loadings.
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through the mediator gM. That effect represents the extent 
to which changes in the independent variable affect the 
mediator (which in turn affects the dependent variable). The 
direct effect c0 measures the influence of the independent 
variable on the dependent variable that is not mediated by 
gM. When fitting this model to empirical data, the indirect 
and direct effects provide important insights into the rela
tionship between the independent and dependent variables.

2.1. Model Assumptions

The simple and latent mediation models are both crucial 
tools for estimating the indirect effect and understanding 
the relationships between variables. However, the estimated 
indirect relationship effect (âb̂) may not represent the actual 
(true) mediation effect unless several assumptions are met, 
as discussed by VanderWeele and Vansteelandt (2009) and 
(VanderWeele, 2015). These assumptions include the 
absence of unmeasured confounders and accurate measure
ment of variables without error. The assumptions for simple 
mediation analysis have their counterparts in latent medi
ation analysis.

First, there must be an absence of unmeasured con
founders influencing the relationships between the inde
pendent variable (n) and the mediator (gM), the mediator 
(gM) and the outcome variable (gY), and the independent 
variable (n) and the outcome variable (gY). These assump
tions are crucial because unmeasured confounders can 
introduce bias, making it difficult to estimate the true 
mediation effect accurately. Second, the latent mediation 
model introduces additional complexity due to including 
latent variables. It is thus essential to ensure the absence 
of misspecification in the measurement models for all 
latent variables, including confounders. A misspecified 
measurement model leads to a biased understanding of the 
latent variables, which can, in turn, bias the estimates of 
the mediation effect.

Ensuring these assumptions are met can be challenging 
in practice. Unmeasured confounders are often difficult to 
identify and control for, and specifying the correct measure
ment model requires careful consideration and validation. 
Despite these challenges, adhering to these assumptions is 
vital for obtaining valid and reliable estimates of mediation 
effects in simple and latent mediation models. When the 
model assumptions are violated, the fit of the model to the 
empirical data is compromised, resulting in model misspeci
fication. Therefore, the violation of model assumptions can 
be understood as an issue of model specification.

3. Bayesian Inference and Model Fit Assessment

Bayesian framework provides increased flexibility for models 
estimated within SEM, as demonstrated by B. Muth�en and 
Asparouhov (2012). Additionally, it offers improved conver
gence, as noted by Kaplan and Depaoli (2012). These advan
tages have made Bayesian approach a preferred tool within 
SEM. Latent mediation models, encompassing both meas
urement models and the structural model describing the 

relationships among latent variables, can be fitted using 
Bayesian SEM methods. Mio�cevi�c et al. (2021) evaluated the 
performance of Bayesian inference for latent mediation 
models under correct model specifications, highlighting its 
effectiveness in this context.

The Bayesian inference incorporates prior beliefs for each 
parameter and updates these beliefs using data collected 
through Bayes’ theorem (e.g., Gelman, 2006; Kruschke, 
2014; Liu et al., 2022):

PðhjdataÞ / PðdatajhÞPðhÞ: (4) 

Here, h represents the collection of all model parameters 
to be estimated, PðhjdataÞ is the posterior distribution, 
PðdatajhÞ is the likelihood, and PðhÞ is the prior distribution 
of the model parameters. The prior encapsulates the initial 
belief about the model parameters, and it influences the pos
terior inference of these parameters.

3.1. Prior Specification

In Bayesian inference, the choice of priors plays a crucial 
role in guiding parameter estimation and ensuring stable 
model performance, particularly in complex models like 
latent mediation analysis. For continuous parameters such 
as factor loadings (kx=y) and path coefficients (a, b, c0; and 
bk) without sign restrictions, normal priors are commonly 
employed in both SEM and mediation analysis. This practice 
is well-documented in the literature, including studies by 
Asparouhov and Muth�en (2010), Depaoli (2013), Yuan and 
MacKinnon (2009), and Zhao et al. (2024),

kx=y � N lkx=y
, r2

kx=y

h i
, (5) 

a, b, c0, bk � N la=b=c0=bk
, r2

a=b=c0=bj

h i
: (6) 

The accuracy of a normal prior is determined by its 
mean (l). When l is set to the true parameter value, the 
prior is considered accurate. If l deviates from the true 
value, the prior becomes inaccurate, with the degree of 
inaccuracy increasing as the deviation grows. The variance 
(r2) of the prior controls its informativeness by determining 
its spread. An infinite variance (e.g., r2 ¼ 1) represents a 
diffuse prior, which provides minimal guidance and allows 
the data to primarily influence the estimation process. In 
contrast, a smaller variance (e.g., r2 ¼ 1) results in a weakly 
informative prior that incorporates moderate prior certainty 
without being overly restrictive, thereby balancing prior 
knowledge and data-driven inference.

The residual variance parameters (r2
n=gM=gY=ej

), they take 
positive values, and inverse gamma priors are often used 
whose domain are nonnegative. An inverse gamma (IG) 
prior can be utilized,

r2
n=gM=gY=ej

� IGðj, mÞ, : (7) 

Here, j and � represent the shape and scale parame
ters, respectively. Adjusting these parameters influences 
the informativeness of the IG prior. For instance, setting 
both j and � to small values (e.g., 0.01) yields a weakly 
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informative prior, exerting minimal influence when prior 
knowledge about the variances is limited. Larger values 
for these parameters indicate greater certainty regarding 
the expected range of variance estimates. This flexibility 
allows the IG prior to accommodate varying levels of 
prior knowledge while ensuring computational stability 
(e.g., Depaoli et al., 2024; Liu et al., 2016; Merkle & 
Rosseel, 2015).

In Bayesian analysis, the diffuse prior for path coeffi
cients and factor loading parameters is often specified as 
Nð0,1Þ; implying equal plausibility across all real numbers, 
and serves as the default in Mplus. In practice, priors with a 
certain level of informativeness are often used to enhance 
the efficiency and convergence of MCMC estimation. 
However, the accuracy and informativeness of a normal 
prior depend on the true parameter value, making it essen
tial to systematically examine these aspects. Given that 
model misspecifications can interact with prior choices, this 
study explores how varying levels of prior informativeness 
and accuracy influence Bayesian inference under both cor
rectly specified and misspecified models. The specific nor
mal priors used in the simulation design will be detailed in 
the corresponding section.

For the inverse Gamma prior, we adopt the default 
IGð−1, 0Þ in Mplus, following the recommendations from 
Asparouhov and Muth�en (2010). This prior is equivalent to 
a uniform distribution over the positive real line. Unlike the 
normal prior for factor loadings and path coefficients, which 
directly influence mediation effect estimates, the IG prior 
primarily governs residual variances. Since our study focuses 
on detecting and assessing the impact of model misspecifi
cations, manipulating the IG prior would introduce an add
itional layer of complexity unrelated to our primary 
research question. To maintain a clear evaluation of how 
prior informativeness interacts with model misspecification, 
we keep the IG(−1, 0) for the variance parameter, while sys
tematically varying the normal prior to assess its influence 
under different model conditions.

3.2. Set up for Markov Chain Monte Carlo

Posterior inference relies on samples drawn from the poster
ior distribution. Two Markov chains are generated for each 
parameter, each with a length of 20,000 iterations. The ini
tial 50% of these samples (i.e., 10,000 iterations), known as 
the burn-in period, is discarded to reduce the initial values’ 
influence and allow the chains to reach a stable distribution. 
Ensuring the convergence of these chains is crucial for reli
able posterior inference. Various diagnostic tools, such as 
trace plots and the Gelman-Rubin (R̂) statistic, can be 
employed to assess convergence. In the simulation study, a 
replication is considered “converged” if R̂ < 1:1 for all 
parameters. The number of iterations in the current setup 
was determined based on satisfactory evidence of conver
gence from these two diagnostic tools after running different 
chain lengths.

3.3. Bayesian Model Fit and Assessment Measures

A critical aspect of model evaluation is determining whether 
the specified model provides an adequate fit to the empirical 
data. Bayesian approximate fit and selection fit indices serve 
as valuable tools for detecting model misspecification and 
the violations of key assumptions. We evaluated BRMSEA, 
BCFI, BTLI, Bayesian Ĉ and Ĉadj; and PPP. Those are the 
widely used fit indices that are either readily available or 
easily extractable in Bayesian SEM software such as Mplus 
(Muth�en & Muth�en, 1998–2017) and the R blavaan pack
age (Merkle & Rosseel, 2015).

3.3.1. Posterior Predictive p-Value
PPP for Bayesian SEM is calculated based on the chi-square 
statistic TML obtained for comparing the model fitted 
against the saturated model. The SEM discrepancy function 
TML is defined as:

TML ¼ n log jRðhÞj þ trfSRðhÞ−1
g − log jSj − p

� �
, 

where n is the sample size, S is the sample covariance 
matrix, RðhÞ is the model-implied covariance matrix based 
on the parameter estimates h, p is the number of observed 
variables, j � j denotes the determinant, and trf�g denotes 
the trace of a matrix.

At each MCMC iteration, s, a simulated data set Ys
rep of 

the same size as the observed dataset is generated from the 
model with parameter values set at hs. We then can calcu
late the TMLðYobs, hsÞ and TMLðYs

rep, hsÞ; then

PPP ¼ P TMLðYs
rep, hsÞ > TMLðYobs, hsÞ

h i
(8) 

A perfect-fitting model is expected to have a PPP value 
centering around 0.5 and spread evenly above and below, 
indicating that about 50% of the replicated datasets have 
discrepancy statistics greater than those of the observed 
data. A low PPP value near 0 suggests potential model mis
specification (Asparouhov & Muth�en, 2010).

3.3.2. Bayesian Approximate Fit Indices
The Bayesian RMSEA is calculated as follows:

BRMSEAs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max 0,
TMLðYobs, hsÞ − p�

ðp� − pDÞn

� �s

, 

where TMLðYobs, hsÞ is the discrepancy function for the 
observed data at iteration s, and p� is the number of non
redundant sample moments. A small value of BRMSEA 
implies a good fit. A widely used value of the threshold 
is 0.05.

The Bayesian CFI is computed as follows:

BCFIs ¼ 1 −
TT

MLðYobs, hsÞ − p�

TB
MLðYobs, hsÞ − p�

, 

where TT
MLðYobs, hsÞ is the discrepancy function (for the 

observed data) of the fitted model and TB
MLðYobs, hsÞ is the 

discrepancy of the baseline model at iteration s.
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The Bayesian TLI is computed as follows:

BTLIs ¼

TB
MLðYobs, hsÞ−pB

p�−pB
− TT

MLðYobs, hsÞ−pT
p�−pT

TB
MLðYobs, hsÞ−pB

p�−pB
− 1

, 

where pB is the model complexity term for the baseline 
model, and pT is the target model under evaluation.

In addition to the standard fit indices provided by Mplus, 
we also evaluate the Bayesian Ĉ and Ĉadj; which have been 
shown to exhibit less variability across different model types 
and sample sizes Fan and Sivo (2007) and (Garnier- 
Villarreal & Jorgensen, 2020). The Bayesian Ĉ is computed 
as:

Ĉs ¼
p

pþ 2 TT
MLðYobs, hsÞ−p�

n

, 

where p represents the number of observed variables in the 
model, TT

MLðYobs, hsÞ denotes the test statistic based on the 
maximum likelihood estimation for the observed data Yobs 
and posterior draws hs, and n is the sample size. The 
adjusted version is

Ĉadj ¼ 1 −
p�

p � −pD
ð1 − ĈÞ, 

BCFI, BTLI, Ĉ; and Ĉadj values closer to 1.0 indicate a 
good fit. For a maximum likelihood method, a cutoff of 
0.95 is practically used for them (Hu & Bentler, 1999).

The SEM discrepancy function is evaluated using the 
parameters at each iteration, the resulting TML values are 
used to calculate the approximate fit indices. These quanti
ties form the posterior distribution of RMSEA, CFI, TLI, Ĉ 

and Ĉadj: From these distributions, the median is reported 
as the point estimate, along with the corresponding credibil
ity intervals (Asparouhov & Muth�en, 2021).

4. Simulation Design

In this section, we will conduct a comprehensive simulation 
study to evaluate the performance of Bayesian approximate 
fit indices and the PPP in identifying violations of model 
assumptions (i.e., model misspecifications). We will examine 
various scenarios where these assumptions might be 
breached and assess the effectiveness of these indices in 
detecting such violations. Furthermore, we will delve into 
how the accuracy and informativeness of prior distributions 
influence the variability of these fit indices. By varying the 
priors values, we aim to understand the robustness of 
Bayesian RMSEA, CFI, TLI, Ĉ, Ĉadj and PPP to prior speci
fications. This investigation is critical for providing insights 
into the sensitivity of Bayesian SEM fit indices to prior spec
ifications and ensuring their reliable application in empirical 
research implementing the latent mediation model.

4.1. Population Model

The population model is a latent mediation model with con
founders, depicted in Figure 1. The model includes a latent 

independent variable (n), a latent mediator (gM), and a 
dependent variable (gY). Each latent variable has three pri
mary factor loadings for continuous items: n loads on Items 
X1–X3, gM on Items Y1–Y3, and gY on Items Y4–Y6. Paths 
are specified from n to gM and gM to gY with coefficients a 
and b respectively, and a direct path from n to gY with coef
ficient c0:

To examine the impact of confounder omission, we 
include two confounders, fc1 (with primary indicators X4– 
X6) and fc2 (with primary indicators X7–X9). fc1 confounds 
the paths from n to gM with coefficients b1 and b2, while fc2 
confounds the paths from gM to gY with coefficients b3 and 
b4. To reduce complexity, we restrict b1 ¼ b2 ¼ b3 ¼ b4 but 
vary their magnitudes among 0, 0.14, and 0.39, representing 
no true confounding effect, a small confounding effect, and 
a medium-sized confounding effect, respectively.

The primary factor loadings of all items are set as 0.7. 
The non-zero cross-loading from Item X7 to gM is included, 
set at 0.5. The factor variance for fc1 and fc2 is set at 1. The 
variance or residual variance of n is set at 1 − b2

1; taking val
ues of 1, 0.9804, or 0.8479 depending on the magnitude of 
b1, ensuring the variance of n equals 1.

The variances of gM and gY include both the variance 
explained by their predictor factors and residual variance. 
The residual variance of gM is 1 − a2 − b2

2 − b2
3; and for gY 

it is 1 − b2 − c02 − b2
4; making the total variances equal to 1. 

The residual variance of the indicators is set at 0.51, result
ing in unit variance for each indicator.

4.2. Design Factors and Prior Specification

The simulation design factors include the manipulation of 
the mediation effect, the confounding effect, sample size, 
types of misspecification, and prior specifications.

4.2.1. Mediation Effect
In the population model, the coefficient c0 is set at 0.14 con
sistently for all conditions. The coefficients a and b are con
strained to equal and take values of 0.14, 0.39, and 0.59 to 
represent small, medium, and large mediation effects, 
respectively (Liu et al., 2021; Tofighi & Kelley, 2020).

4.2.2. Confounding Effect
The path coefficients from the confounders fc1 and fc2 to n 

and gM, as well as gM and gY, are denoted as b1, b2, b3, and 
b4. These coefficients take values of 0, 0.14, and 0.39 to 
manipulate the degree of confounding effects. For simplicity, 
we set b1 ¼ b2 ¼ b3 ¼ b4:

4.2.3. Sample Size
We consider three sample sizes (n¼ 100, 200, and 400) to 
represent a range commonly found in applied and methodo
logical research (e.g., Mio�cevi�c et al., 2021).
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4.2.4. Model Specification
The diagram of the population model is shown in Figure 1. 
Each set of parameter values constitutes a “true model” for 
corresponding simulation conditions. We also constructed 
six misspecified models, each containing certain measure
ment or structural model errors. These include two types of 
measurement model misspecification for the mediator factor 
gM: one omitting the cross-loading from Item X7 to gM 
(referred to as the “wrong measurement model for mediator 
factor”) and the other using the standardized total score of 
the indicators for gM (referred to as the “no measurement 
model for mediator factor”).

Additionally, we consider the misspecification of the 
measurement models of the confounder factors with models 
ignoring the measurement structure of fc1 (referred to as 
“no measurement model for one confounder”) and both fc1 
and fc2 (referred to as “no measurement model for two 
confounders”).

For the structural model misspecifications, we examine 
models that ignore the confounder for the path from n to 
gM (referred to as “one ignored confounder factor”) and 
models that omit both confounders fc1 and fc2 (referred to 
as “two ignored confounder factors”).

4.2.5. Prior Specification
Priors for the residual variances were kept consistent with 
the Mplus default diffuse settings, where residual variances 
received IGð−1, 0Þ priors. The diffuse prior for variance 
parameters ensures minimal influence on inference 
(Asparouhov & Muth�en, 2010).

Since model misspecifications are introduced through 
factor loadings and path coefficients of the confounders, it 
is important to examine how prior specifications for these 
parameters interact with model specification. To achieve 
this, we vary the location and spread of the normal priors 
for factor loadings and path coefficients. In addition to dif
fuse priors, we include three weakly informative priors as 
defined in Depaoli (2013):

Weakly informative-accurate : kx=y, b, a, b, c0

� N ðtrue, 0:5trueÞ, (9) 
Weakly informative-inaccurate-1SD : kx=y, b, a, b, c0

� N trueþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

, (10) 
Weakly informative-inaccurate-2SD : kx=y, b, a, b, c0

� N trueþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

, (11) 

where “true” refers to the true parameter values. These pri
ors incorporate the scale of the true parameter values, 
ensuring that both the spread and the magnitude of inaccur
acy are relative to the true value.

4.3. Summary of Simulation Conditions

Simulation and prior settings can be found in Table 1. In 
all, there were 756 simulation cells in this design, and we 
generated 500 datasets for each cell. The percentage of 

converged applications was, on average, 99.67%, with a 
median of 100% assessed using the Gelman-Rubin conver
gence diagnostic. A replication was considered “converged” 
if the Gelman-Rubin statistic (R̂) fell below the threshold 
value of 1.1 for all parameters.

4.4. Overview of the Simulation Results

We will assess the effectiveness of the Bayesian SEM 
approximate fit measures RMSEA, CFI, TLI, Ĉ, Ĉadj; and 
the PPP, in detecting violations of model assumptions. 
Specifically, we examine the misspecification in the meas
urement model and the omission of latent confounders. The 
results are structured into four sections: (1) misspecification 
of the measurement model of the mediator using diffuse 
priors, (2) misspecification of the measurement model of 
the confounders using diffuse priors, (3) omission of con
founders under diffuse priors, and (4) prior sensitivity 
analysis.

We will investigate how the distribution of fit indices is 
affected by model misspecifications, sample size, the magni
tude of indirect effects, and the influence of confounders. 
Additionally, we will evaluate the effectiveness of approxi
mate fit measures in classifying model fit using a credible 
interval-based approach. For PPP, we will compute rejection 
rates across different cutoff values to examine how they vary 
under different thresholds.

4.4.1. Distribution of Fit Indices
We first examine the empirical distributions of the model fit 
indices—BRMSEA, BCFI, BTLI, Ĉ; Ĉadj and PPP. In each 
replication, we extracted the value of each approximate fit 
indices evaluated at the posterior mean of the model param
eters, and PPP. All these replicated values form the empir
ical distribution under each simulation condition.

All conditions to assess their sensitivity to model specifi
cation, sample size, magnitudes of the mediation effect, and 

Table 1. Summary of simulation factors and prior specifications.

Simulation factor Levels/specifications

Mediation effect a ¼ b ¼ 0:14 (small)
a ¼ b ¼ 0:39 (medium)
a ¼ b ¼ 0:59 (large)

Confounding effect b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 (none)
b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0:14 (small)
b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0:39 (medium)

Sample size n¼ 100, 200, 400
Model specification True model

Misspecified models:
- Wrong measurement model for mediator factor
- No measurement model for mediator factor
- No measurement model for one confounder
- No measurement model for two confounders
- One ignored confounder factor
- Two ignored confounder factors

Prior specification Diffuse prior:
- IGð−1, 0Þ for residual variances
Weakly informative priors:
- Accurate: Nðtrue, 0:5trueÞ
- Inaccurate-1SD: N trueþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

- Inaccurate-2SD: N trueþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �
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confounding effects. To visualize these distributions, we 
generate box-and-whisker plots representing the 5%; 25%;

50%; 75%; and 95% the percentiles of the replicated fit 
indices. In these plots, the whiskers indicate the 90% confi
dence intervals, the box represents the interquartile range 
(first and third quartiles), and the horizontal line inside the 
box denotes the median.

4.4.2. Credible Interval-Based Model Fit Classification
The approximate fit indices are intended to quantify the 
degree of model misfit. However, in practice, researchers 
often seek qualitative decisions about model adequacy des
pite the inherently quantitative nature of fit indices. To bet
ter reflect this need, we classify model fit base on the 90% 
credible intervals following the approach recommended by 
Asparouhov and Muth�en (2021) and adopted in recent stud
ies (e.g., Cao et al., 2024; Depaoli et al., 2023; Heo et al., 
2024). Specifically, a model is classified into three categories. 
A model has a “good fit” if the entire 90% CI falls below 
0.06 for BRMSEA or above 0.95 for BCFI, BTLI, Ĉ; and 
Ĉadj: In contrast, a model has a “poor fit” if the entire 90% 
CI is outside these cutoff values. If the cutoff value is within 
the 90% CI, the fit of the model is classified as 
“inconclusive.”

To quantify each index’s ability to detect model misspeci
fication, we calculated the proportion of replications classi
fied as “good fit,” “inconclusive,” or “poor fit.” For correctly 
specified models, we expected a high proportion of “good 
fit” classifications. Conversely, for models misspecified, the 
fit index that produced the high proportion of “poor fit” 
classifications was deemed sensitive to detect 
misspecification.

We would like to note that the classification of model fit 
depends on the specific cutoff values used. In this study, we 
adopted the 0.95 threshold based on practical recommenda
tions by Hu and Bentler (1999). If different thresholds were 
applied, classification results would vary. For example, using 
a 0.90 cutoff for BCFI or BTLI would increase the propor
tion of models classified as “good fit.” We encourage readers 
to interpret these classifications in light of the chosen 
thresholds.

4.4.3. Evaluation of PPP
For PPP, there is no direct distributional comparison for 
competing models, and no universally agreed-upon cutoff 
values exist, despite the popular use of 0.05. To explore its 
utility in detecting model misspecification, we tested three 
threshold values—0.05, 0.10, and 0.15—and examined how 
often misspecified models were detected under each thresh
old, as done by Cain and Zhang (2019).

5. Simulation Result I: Misspecification of the Latent 
Mediator Measurement Model

This section focuses on misspecifications in the measure
ment model of the latent mediator gM. Two types of 

misspecifications are examined. One ignores the cross- 
loading from x7 to gM (referred to as “the wrong measure
ment model of the mediator factor”), and the other ignores 
the measurement structure entirely, using the standardized 
total score of the indicators for gM (referred to as “no meas
urement model of the mediator factor”).

To assess chain convergence, we use Gelman-Rubin R̂ <

1:1 as the criterion, the percentage of converged replications 
was around 99.67%. The simulation results will be calculated 
based on only converged replications in the subsequent 
analyses.

To examine the distribution of the fit indices under dif
ferent model specifications, we visualize their distributions 
using box-and-whisker plots displaying the 5%, 25%, 50%, 
75%, and 90% percentiles. Furthermore, we present bar plots 
illustrating the proportion of models classified as “good fit,” 
“inconclusive,” and “poor fit” for (1) the correctly specified 
model, (2) the model with misspecification in the measure
ment model (i.e., ignoring the cross-loading), and (3) the 
model without a measurement model. The relative size of 
each category reflects the sensitivity of the fit indices to dif
ferent types of misspecification. Furthermore, for PPP, we 
will explore different cutoff values—0.05, 0.10, and 0.15—to 
assess how varying thresholds influence the rates of detect
ing model misfit.

To focus on the behavior of the fit indices themselves, all 
reported results are based on the default diffuse priors 
implemented in Mplus. The normal prior Nð0,1Þ are used 
for factor loadings and path coefficients, and the IGð−1, 0Þ
prior for variance parameters.

5.1. BRMSEA

Figure 2a and b contain the box-and-whisker plots of 
BRMSEA and the proportion of model classifications based 
on 90% credible intervals. The grid is organized with col
umns representing the three magnitudes of the mediation 
effects (a ¼ b ¼ 0:14; 0.39, 0.59) and sample sizes (100, 200, 
400). The rows show the confounding effects (none ¼ 0, 
small ¼ 0.14, and medium ¼ 0.39). The x− axis represents 
different model specifications.

5.1.1. Distribution of BRMSEA
In Figure 2a, the horizontal line refers to the value of 0.06. 
The box plots reveal that the distributions of the BRMSEA 
values are influenced by the model specification of the 
mediator gM, sample size, and mediation effects.

The BRMSEA results consistently show that the true 
model maintains a BRMSEA value below the traditional 
threshold of 0.06 under all conditions even with a sample 
size 100. Both the wrong measurement model (omitting the 
cross-loading from Item X7) and the model using the stand
ardized total score of the indicators (no measurement 
model) result in inflated BRMSEA values. The use of stand
ardized total scores has more severe consequences for model 
fit than the omission of a cross-loading.
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Moreover, the presence of confounders may slightly miti
gate the impact of a misspecified measurement model, as 
increasing confounding effects lead to a slight decrease in 
BRMSEA values. For the same type of misspecification, 
BRMSEA values tend to increase as the mediation paths 
strengthen. Additionally, sample size influences both the 
median and interquartile range of BRMSEA values. Larger 
sample sizes generally reduce both the variability and 
median BRMSEA values across all models, though the mag
nitude of this reduction varies depending on the degree of 
misspecification.

5.1.2. Model Fit Classification Using the 90% Credible  
Intervals of BRMSEA
Figure 2b presents stacked bar charts that depict the propor
tion of replications classified as “good,” “inconclusive,” or 
“poor fit” model fit based on the 90% credible intervals of 
BRMSEA values.

For the true model, BRMSEA consistently classified the 
model as “good fit” for sample sizes of 200 and above. 
When the sample size was 100, approximately 50% of the 
replications fell into the “good” fit category, while the 
remaining 50% were classified as “inconclusive,” with little 

Figure 2. Bayesian RMSEA for different model specifications of the mediator factor using the diffuse priors.
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to no replications categorized as “poor fit.” This suggests 
that smaller sample sizes introduce greater uncertainty in 
model fit evaluation but do not lead to systematic misclassi
fication of well-specified models as a “poor fit” model.

In contrast, models with misspecified measurement 
structures exhibited a noticeable shift toward 
“inconclusive” or “poor fit.” Specifically, when the meas
urement model for the mediator was misspecified (ignor
ing the cross-loading), the proportion of incorrect 
classification as a “good fit” decreases, and meanwhile, 
the “poor fit” classifications increases. For instance, the 
“good fit” class is only around 20–40%, when the con
founding effect is null. This pattern suggests that 
BRMSEA detects the minor misfit such as ignoring a 
cross-loading but with some uncertainty.

The misfit becomes even more pronounced when no 
measurement model is used for the mediator, leading to a 
substantial decrease in the proportion of “good fit”, but 
increase in the proportion of “poor fit.” The proportion of 
“good fit” is less than 10%. This pattern indicates that 
BRMSEA is highly sensitive to the omission of a measure
ment model.

Furthermore, the strength of the mediation effect influ
enced the sensitivity of BRMSEA to detect misspecifica
tions. As the mediation effect increased, misspecified 
measurement models for the latent mediator are more fre
quently classified as “poor fit” or “inconclusive.” However, 
this sensitivity declined when the confounding effect 
increased, suggesting a potential interaction between con
founding and model fit assessment. This indicates that 
strong confounding effects may obscure the detection of 
mediation model misspecifications, which warrants careful 
consideration when interpreting fit indices in the presence 
of confounders.

5.2. BCFI and BTLI

Since BCFI and BTLI exhibit similar performance, we pre
sent them within the same subsection. Our primary focus 
will be on interpreting the results of BCFI while highlighting 
key distinctions between BTLI and BCFI.

Figure 3a and b demonstrate the distributions of Bayesian 
CFI and the rates to detect misfit using the 90% credible 
intervals of BCFI. The columns represent the three magni
tudes of the mediation effects (a ¼ b ¼ 0:14, 0:39, 0:59) and 
three sample sizes (i.e., 100, 200, 400). The rows show the 
confounding effects (no effect ¼ 0, small ¼ 0.14, and 
medium ¼ 0.39). The x− axis is the model specifications.

5.2.1. Distribution of BCFI
In each panel of Figure 3a, the horizontal dashed line repre
sents a BCFI of 0.95.

For the true model, more than 95% of the replications 
produced a BCFI greater than 0.95 when the sample size 
was 200 or 400, confirming a good model fit. With a sample 
size of 100, approximately 75% of the replications had BCFI 
greater than 0.95.

With a misspecified measurement model for the mediator 
(i.e., ignoring cross-loadings), BCFI values are consistently 
lower than those of the correctly specified model in all con
ditions. This indicates a poorer model fit when the measure
ment model is not correctly specified. In the model that uses 
the standardized total score for the mediator, BCFI values are 
even lower than those observed in the cross-loading misspeci
fication scenario. This suggests that replacing the latent medi
ator with its total score leads to the poorest fit among the 
evaluated conditions.

When comparing across different sample sizes, BCFI 
values increased for the correctly specified model and 
decreased slightly for the misspecified model as the sample 
size increased. This demonstrated the expected benefits of 
larger samples. In addition, the variability of BCFI values 
decreases as the sample size increases, suggesting that 
larger samples lead to more stable estimates of the 
model fit.

Finally, as the magnitude of the indirect effect increased, 
the BCFI for misspecified models declined, making them 
more distinguishable from correctly specified models. 
However, in the presence of strong confounders, the impact 
of measurement model misspecification was reduced, rein
forcing the stand that confounding effects can obscure 
model misspecifications, potentially leading to misleading 
conclusions about model fit.

5.2.2. 90% Credible Interval Rejection Rates
Figure 3b provides a comprehensive depiction of the model 
fit classification based on the 90% credible intervals of 
BCFI.

For the correctly specified model, BCFI consistently indi
cated a “good fit,” particularly when the sample size is 200 
or 400, with almost 100% replications falling into this cat
egory. This result demonstrates that BCFI effectively identi
fies correctly specified models when the sample size is 
adequate. However, with a sample size 100, the proportion 
of “inconclusive” classification increased to approximately 
75% but no “poor fit” classification, suggesting that the 
small sample size introduced more uncertainty in the model 
fit classification.

In contrast, models with errors in the measurement 
model exhibited a noticeable shift toward “inconclusive” or 
“poor fit” classifications. When the mediator measurement 
model is misspecified (e.g., ignoring cross-loadings), the 
proportion of incorrectly classifying the model as having a 
“good fit” decreased, with the proportion of “good fit” clas
sification falls below 5% when no confounding effect, below 
10% when the confounding effect is small, and around 40% 
when the confounding effect is medium.

The omission of a measurement model for the mediator 
further amplified the misfit of the model, leading to a sub
stantial increase in “poor fit” classifications and notable 
decrease in “good fit” classification.

For misspecified models, a larger sample size enhanced 
BCFI’s ability to detect misfit in the measurement model of 
the latent mediator, as evidenced by an increasing propor
tion of “poor fit” classifications in all conditions.
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Additionally, as the mediation effect strengthened, the BCFI 
became more sensitive to measurement model misspecification, 
resulting in a higher portion of “poor fit.” However, stronger 
confounding effects reduced the proportion of “poor fit”, sug
gesting that increased confounding can obscure mediator mis
specifications, making them more challenging to detect.

5.2.3. BTLI vs. BCFI
The distribution of BTLI and the model fit classification are 
presented in Figure 4a and b.

We observed that their patterns followed a similar trend 
to those of BCFI. However, BTLI values tend to be lower on 
average than BCFI, with the entire distribution shifting 
downward toward 0.50 for both correctly specified and mis
specified models. This shift increases its ability in detecting 
misspecifications, resulting in a higher proportion of “poor 
fit.” Additionally, it reduces the chance of falsely treating a 
misspecified model as “good fit.” However, this downward 
shift also inflates the proportion of “inconclusive” classifica
tions for correctly specified models when the sample size 
was small.

Figure 3. BCFI for different model specifications of the mediator factor using the diffuse priors.
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5.3. Bayesian Ĉ and Ĉadj

Since Ĉ and Ĉadj exhibit similar behavior, we will focus on 
interpreting Ĉadj; which demonstrates slightly better per
formance in detecting model misfit. The results about Ĉ are 
available as online supplementary materials.3

Figure 5a and b display the box-and-whisker plots for 
Ĉadj alongside stacked bar plots illustrating model fit classifi
cation based on their 90% credible intervals.

5.3.1. Distribution of Ĉadj

The distribution of Ĉadj remained consistently high across 
all model specifications. For the correctly specified model, 
the Ĉadj values clustered around 0.95.

When the measurement model is incorrectly specified by 
ignoring a cross-loading, Ĉadj values decreases. The decline 

Figure 4. Bayesian TLI for different model specifications of the mediator factor using the diffuse priors.

3The Ĉ is available at https://osf.io/q8vpm/?viewonly=fec9e23cafdb4f1babefe 
56eb4230da4

12 LIU, HEO, IVANOV, DEPAOLI

https://doi.org/10.1080/10705511.2025.2503789
https://osf.io/q8vpm/?viewonly=fec9e23cafdb4f1babefe56eb4230da4
https://osf.io/q8vpm/?viewonly=fec9e23cafdb4f1babefe56eb4230da4


is even more pronounced when the standardized total score 
is used for the latent mediator, suggesting that using stand
ardized total scores constituted a more severe form of mis
specification compared to ignoring a cross-loading.

Additionally, as the sample size increases, the central ten
dency (the middle line of the box) of the distribution is 
pretty stable, however, the variability of Ĉadj decreases.

5.3.2. Model Fit Classification Using the 90% Credible Interval
Figure 5b contains the stacked bar charts of the three model 
fit classification: “good fit”, “inconclusive”, and “bad fit.”

The Ĉadj performed exceptionally well in classifying cor
rectly specified models as a “good fit,” particularly when the 
sample size is 200 or 400, where the vast majority of replica
tions fall into this category. However, with a smaller sample 
size of 100, around 80% − 90% of the replications have 
“inconclusive” fit.

When a cross-loading is omitted (i.e., incorrect measure
ment model), Ĉadj values decrease, resulting in a noticeable 
increase in the proportion of replications classified as “poor 
fit” and a significant reduction in the “good fit” classifica
tions. For example, when no confounder is included in the 

Figure 5. Bayesian Ĉadj for the different model specifications of the latent mediator factor.
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model, fewer than 5% of replications are classified as “good 
fit.” The misfit is even more pronounced when the standar
dized total score is used for the latent mediator, leading to a 
higher proportion of “poor fit” classifications and an even 
lower occurrence of “good fit.”

As the mediation effect increased, the likelihood of incor
rectly classifying a misspecified model as a “good fit” 
decreased, while the proportion of correctly identifying a 
“poor fit” increased. However, as the confounding effect 
grew stronger, the proportion of “poor fit” classifications 
dropped.

5.4. PPP

The box-and-whisker plots of PPP and the corresponding 
rejection rates are shown in Figure 6a and b. To assess the 
robustness of PPP under different cutoff values, we tested 
three thresholds: 0.05, 0.10, and 0.15. A model was classified 
as having poor fit and “rejected” if its PPP value fell below 
the respective cutoff. In the figures, the columns and rows 
represent the levels of mediation effects, sample size, and 
confounding effects, respectively.

5.4.1. Distribution of PPP
Figure 6a illustrated the distribution of PPP values across 
different model specifications, mediation path levels, and 
confounding effects. The horizontal dashed line is the refer
ence line with PPP being 0.05.

For the correctly specified model, PPP values remain 
around 0.5 in all conditions, consistently indicating a good 
fit regardless of the mediation path strength and confound
ing effects. In contrast, the central tendency of PPP values 
for the model with a misspecified measurement model for 
the mediator is generally lower than that of the correctly 
specified model, reflecting a decline in model fit. The model 
that omits the measurement model for the mediator has 
even smaller PPP values.

As the sample size increases, the box plots for misspeci
fied models shift downward toward zero. With a sample 
size of 200 or 400, all PPP values fall below 0.05, indicating 
poor model fit.

Both the variability and central tendency of the PPP dis
tribution decrease slightly as the strength of the indirect 
path increases but show a slight increase as the confounding 
effect strengthens.

5.4.2. Rejection Rates Using PPP with Different Cutoff  
Values
Figure 6b presents the rejection rates of a model using PPP. 
The rate of rejection is defined as the proportion of replica
tions with PPP values smaller than a given cutoff value. In 
the current study, we computed the rejection rates using 
three different cutoff values: 0.05, 0.10, and 0.15.

For the correctly specified model (i.e., true model), the 
rejection rates remain below 0.05 when using cutoff values 
of 0.05 and 0.10. When the cutoff increases to 0.15, the 

rejection rate rises to approximately 10%, indicating a 
slightly higher false rejection at this threshold.

The rejection rates of the misspecified model increases as 
the cutoff values increases from 0.05 to 0.15. In addition, 
rejection rates demonstrate greater discrepancies between 
different sample size conditions. With a threshold of 0.05, a 
sample size of 400 ensured rejection rates exceeded 80%. 
When the threshold increased to 0.10, a sample size of 200 
was sufficient to achieve similar rejection rates.

The most pronounced misfit occurs in the no measure
ment model for the mediator factor, where the rejection 
rates were around 90%, especially for the conditions with 
large mediation effects and small confounding effects.

5.5. Summary

For detecting measurement model misspecifications in a 
latent mediator, we recommend using BCFI and BTLI as 
the primary indicators due to their strong sensitivity to mis
specifications. BRMSEA can serve as a supplementary meas
ure, particularly in cases of severe misspecification. The Ĉadj 

demonstrated similar perform as BCFI and BTLI. PPP may 
be useful for larger sample size conditions, but its effective
ness depends on cutoff selection. A threshold 0.10 helps bal
ance the false rejection of a correctly specified model and 
the correct selection of a misspecified model.

6. Simulation Result II: Misspecification of the 
Confounder Measurement Model

In this section, we evaluate the impact of ignoring the meas
urement model and using standardized total scores of the 
indicators for the latent confounders fc1 and fc2 on the 
model fit. We will examine how Bayesian approximate fit 
indices and PPP detect the absence of a measurement model 
for these confounders. We consider two scenarios with vary
ing degrees of misspecification. The first scenario involves 
ignoring the measurement model for the confounder fc1;

which affects the path between the independent variable n 

and the mediator gM. The second scenario involves omitting 
the measurement model for both confounders, impacting 
the paths from n to gM and from gM to the dependent vari
able gY. For reference, the results also include the correctly 
specified model.

6.1. BRMSEA

The box-and-whisker plots of BRMSEA values and the pro
portion of model fit classifications based on credible inter
vals are displayed in Figure 7a and b. The columns are 
organized so that within each sample size condition, the 
three magnitudes of the mediation effects are nested. The 
rows represent the three magnitudes of the confounding 
effects. Across the plots, the x-axis denotes different model 
specifications.
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6.1.1. Distribution of BRMSEA
Figure 7a shows that the model with no measurement 
model for one confounder factor has slightly higher and 
more spread-out BRMSEA values compared to the cor
rectly specified model. The absence of a measurement 
model for both confounder factors significantly increases 

BRMSEA values, indicating the poorest fit among the mod
els. BRMSEA values rise slightly as the mediation effect 
strengthens and the confounding level decreases, suggest
ing that a stronger mediation effect amplifies the misfit 
caused by the misspecified measurement model of 
confounders.

Figure 6. Bayesian PPP for different model specifications of the mediator factor using the diffuse priors.
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6.1.2. Model Fit Classification Using 90% Credible  
Intervals
Figure 7b indicates that when the sample size is 100, the 
proportion of replications classified as having a “good fit” is 
approximately 50% even for the true model across different 
conditions; on the other hand, the remaining replications 
are classified as “inconclusive.” When only one confounder 
has no measurement model, about one-third of replications 
are still incorrectly classified as having a “good fit,” with the 
rest being “inconclusive” mostly. Only when both 

confounders have no measurement models are almost all or 
all replications classified as having a “poor fit.”

When the sample size increases to 200 and 400, regard
less of the magnitudes of the mediation or confounder 
paths, all replications for the correctly specified model and 
the model without a measurement model for one con
founder are classified as conclusively having a “good fit.” 
On the other hand, for the misspecified model with no 
measurement models for two confounder factors, replica
tions are dominated by conclusively “poor fit” 

Figure 7. Bayesian RMSEA for different model specifications of the confounding factors using the diffuse priors.
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classifications. These patterns suggest that the credible 
interval-based methods can correctly classify the true model 
when the sample size is at least 200, whereas they may not 
be effective at detecting model misfit when the measurement 
model for one confounder factor is ignored.

6.2. BCFI and BTLI

Because the BCFI and BTLI share similar patterns and they 
are organized in one subsection. The box-and-whisker plots 
and 90% credible interval-based misfit detection rates of the 

Bayesian CFI (BCFI) values are reported in Figure 8a and b. 
The columns represent the magnitudes of the mediation 
paths nested within sample sizes. The rows correspond to 
the magnitudes of the confounding effects.

6.2.1. Distribution of BCFI
Figure 8a presents the box-and-whisker plots of the BCFI 
for models with misspecified measurement models of 
confounders.

The analysis reveals several key patterns. Ignoring the 
measurement model of the confounder fc1; which influences 

Figure 8. Bayesian CFI for different model specifications of the confounding factor using the diffuse priors.
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the path between the independent variable n and the medi
ator gM, results in minimal misfit. The BCFI values for this 
scenario are comparable to those of the correctly specified 
model, indicating a good fit. However, when the measure
ment models for both confounders are neglected, the BCFI 
values drop significantly, suggesting a poor fit. This decrease 
in BCFI highlights the detrimental effect of ignoring the 
measurement structure for multiple confounders on the 
overall model fit.

6.2.2. Model Fit Classification Using 90% Credible  
Intervals
According to the model misfit detection rates shown in 
Figure 8b, when the sample size is the smallest, the propor
tion of replications classified as “good fit” is approximately 
20% for the true model when the mediation paths are 0.14 
or 0.39, but this percentage increases slightly when the 
mediation path is 0.59 and the confounder path is 0.39. A 
similar pattern is found when the measurement model of 
only one confounder is ignored, indicating the poor per
formance of credible interval-based methods. However, 
when the measurement models of two confounder factors 
are ignored, most of the replications are classified as 
“poor fit.”

When the sample size increases to 200 and 400, the pat
terns for the correctly specified model and the model where 
one confounder has no measurement model remain very 
similar, with most replications classified as “good fit,” mean
ing that the misspecified model where one confounder’s 
measurement model is ignored cannot be detected. In con
trast, when both confounder factors have no measurement 
models, the credible interval-based methods classify the 
model as “poor fit.”

6.2.3. BTLI vs. BCFI
The box plots and the rates of detecting model misfit 
using the Bayesian TLI (BTLI) values are shown in Figure 
9a and b.

According to Figure 9a, the BTLI values for the severely 
misspecified models, where the measurement models of 
both confounder factors were ignored, are lower than the 
corresponding BCFI values. This suggests that BTLI can 
detect such severely misspecified models. However, the val
ues and patterns remain similar between the correctly speci
fied model and the misspecified model where the 
measurement model for one confounder is ignored.

Figure 9b further illustrates that, compared to BCFI, 
BTLI classifies a higher proportion of replications as 
“inconclusive,” particularly when the sample size is 200. In 
this case, approximately 20% to 30% of replications fall into 
the “inconclusive” category—higher than the corresponding 
proportion for BCFI.

6.3. Ĉ and Ĉadj

In this subsection, we examine the performance Ĉadj in 
detecting model misspecifications in the latent confounders. 

The two fit indices have similar pattern, We thus detail the 
results about Ĉadj:

Figure 10a and b present the box-and-whisker plots and 
the proportions of model fit classification based on credible 
intervals of Ĉadj: The horizontal dashed line represents a 
value of 0.95, serving as a reference for assessing model fit. 
In both figures, the columns represent different sample sizes 
(i.e., 100, 200, 400) nested within varying magnitudes of the 
mediation effects (i.e., a ¼ b ¼ 0:140:39, 0:59), while the 
rows correspond to different levels of confounding effects 
(no ¼ 0, small ¼ 0.1, medium ¼ 0.39).

6.3.1. Distribution of Ĉadj

According to the box-and-whisker plots in Figure 10b, Ĉadj 

consistently exhibits high values, clustering above 0.95 for 
both the correctly specified model and the model with a 
misspecified measurement model for a single confounder.

However, when the measurement models for both con
founders are omitted, Ĉadj values show a notable decrease, 
with the entire box plots below 0.95. This shift suggests that 
Ĉadj becomes more responsive when the measurement mod
els for both confounders are ignored.

Additionally, for misspecified models, Ĉadj values exhibit 
a slight downward trend as the mediation effect strengthens, 
indicating a marginal increase in its sensitivity to model 
misfit under these conditions.

6.4. Model Fit Classification Based on 90% Credible 
Intervals

Figure 10b shows that when the sample size is 100, most 
replications are classified as “good fit” or “inclusive” for 
both the true model and the model without a measurement 
model for one confounder factor.

For the model without measurement models for two con
founder factors, more than 90% replications are classified as 
“poor fit.” The observed patterns remain generally similar 
for larger sample sizes of 200 and 400.

6.5. PPP

We report the box-and-whisker plots and rejection rates 
based on different cutoffs for PPP values in Figure 11a and 
b. In Figure 11a, the columns represent different sample 
sizes and magnitudes of the mediation effect, and the rows 
indicate different magnitudes of the confounder effects. In 
Figure 11b, the columns represent three different cutoff val
ues (0.05, 0.10, and 0.15) with the magnitudes of the medi
ation effects, and the rows indicate different magnitudes of 
the confounder effects.

6.5.1. Distribution of PPP
The patterns in Figure 11b demonstrate that both the cor
rectly specified model and the model omitting the measure
ment model for a single confounder consistently yield PPP 
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values around 0.5 across all conditions. This stability persists 
regardless of the mediation path strength or the magnitude 
of confounding effects, making it challenging to detect the 
misspecification of a single confounder.

In contrast, the most severe model misspecification, where 
the measurement models for both confounder factors are 
omitted, results in PPP values dropping below 0.05 across all 
conditions. The severity of misfit becomes more pronounced 
as the mediation effect strengthens and the confounding 
effect decreases, further lowering PPP values and indicating a 
substantial deviation from a well-specified model.

6.6. Rejection Rates of PPP with Different Cutoffs

Figure 11b presents the rejection rates for detecting model 
misfit using PPP.

For models where both confounders are misspecified, the 
rejection rate exceeds 0.95 across all conditions and cutoff 
values, indicating that PPP is highly effective in identifying 
severe misspecifications. However, when only a single con
founder is misspecified, the rejection rates remain unaccept
ably low, suggesting limited sensitivity to minor model 
misspecifications.

Figure 9. Bayesian TLI for different model specifications of the confounders using the diffuse priors.
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These findings indicate that PPP is more responsive to 
severe misspecifications in latent confounders but struggles 
to detect more subtle forms of model misfit.

6.7. Summary

When only the confounder nc1; which affects the path from 
the independent variable gn to the mediator gM, is misspeci
fied by ignoring its measurement model, none of the fit 
indices under investigation effectively detect the misspecifi
cation. In this case, PPP is particularly less effective 

compared to the Bayesian SEM approximate fit indices in 
identifying the model misfit.

However, when both confounders, nc1 and nc2; which 
influence the paths from gn to gM and from gM to the out
come variable gY, are misspecified, all fit indices, including 
PPP, exhibit strong sensitivity in detecting the misfit.

7. Simulation Result III: Ignoring True Confounders

This section examines how BRMSEA, BCFI, BTLI, Ĉ, Ĉadj;

and PPP detect the omission of true confounders in 

Figure 10. Ĉadj for different model specifications of the confounders using the diffuse priors.
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mediation analysis. We analyze the distribution of these fit 
indices using box-and-whisker plots that display the 5%, 
25%, 50%, 75%, and 95% percentiles of their empirical dis
tributions. In addition, we report the proportions of models 
classified as “good fit,” “inconclusive,” and “poor fit” based 
on the 90% credible interval, providing insights into the 

effectiveness of these indices in identifying confounder 
omission.

7.1. BRMSEA

The box-and-whisker plots of the values of BRMSEA and 
proportion of model fit classification are demonstrated in 

Figure 11. PPP for different model specifications of the confounders using the diffuse priors.
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Figure 12a and b. The columns reflect the levels of the 
mediation paths and the sample sizes, and the rows reflect 
the levels of the confounding effects (no ¼ 0, small ¼ 0.14, 
medium ¼ 0.39).

7.1.1. Distribution of BRMSEA
Based on the box plots in Figure 12a, when no confounding 
effect is present (i.e., confounding effect ¼ 0), omitting con
founders does not lead to model misspecification. Under 
these conditions, the 90% credible interval (CI) for 
BRMSEA remains below the threshold of 0.05, particularly 

for sample sizes of 200 and 400. However, with a smaller 
sample size (e.g., 100), approximately 25% of replications 
yield BRMSEA values above 0.05, suggesting greater vari
ability in fit assessment.

As the confounding effect increases, omitting a confounder 
results in higher BRMSEA values. When the confounding 
effect is small (e.g., 0.14), the BRMSEA values are slightly ele
vated compared to the correctly specified. With a medium con
founding effect (e.g., 0.39), the BRMSEA values increase more 
substantially, and the entire box plot shifts above 0.06, indicat
ing poor model fit. This trend becomes more pronounced as 
the mediation effect strengthens and the sample size increases.

Figure 12. Bayesian RMSEA for models omitting confounders using the diffuse priors.
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7.1.2. Model Fit Classification Based on 90% Credible  
Interval of BRMSEA
Figure 12b are the stacked bar plots of the proportions of 
“good fit”, “inconclusive”, and “poor fit” groups based on 
the 90% credible intervals of the BRMSEA.

When the confounding effect is 0 or small (i.e., 0.14), the 
proportion of “good fit” classifications remains close to one 
for sample sizes of 200 and 400. With a sample size 100, 
around 50% replications are incorrectly classified as having 
a “good fit” with the remaining as “inclusive.” This suggests 
that the interval-based approach using BRMSEA effectively 
identifies well-specified models while struggling to detect 
the omission of confounders with minimal influence on the 
mediation pathway.

As the confounding effect increases to a medium level 
(i.e., 0.39), a notable shift occurs. The proportion of models 
omitting one confounder being classified as a “good fit” 
drops significantly-falling to around 40% with a moderate 
mediation path and to less than 10% with a strong medi
ation path. When both confounders are omitted, the pro
portion of “good fit” classifications is nearly zero. 
Meanwhile, the proportion of “poor fit” classifications rises 
sharply, reaching approximately 100% when the sample size 
is 200 or 400. This pattern suggests an interaction between 
the magnitude of the mediation effect and the detectability 
of the omission of confounders, where stronger mediation 
effects enhance the sensitivity of BRMSEA.

7.2. BCFI and BTLI

Since BCFI and BTLI function similarly, we present them 
within the same subsection, focusing primarily on the inter
pretation of BCFI results while highlighting key distinctions 
between BTLI and BCFI.

The box plots and rejection rates using the BCFI values 
are reported in Figure 13a and b. The columns and rows 
reflect the levels of the mediation paths and sample sizes, 
and the confounding effects. The horizontal dash line lies 
at 0.95.

7.2.1. Distribution of BCFI
The box plots in Figure 13a illustrate the distributions of 
BCFI.

For the correctly specified model and models omitting 
confounders with a small effect (i.e., 0 and 0.14), BCFI val
ues remain above 0.95 in most cases. However, at a sample 
size of 100, the lower whisker falls below 0.95, indicating 
increased variability. This suggests that BCFI has limited 
sensitivity in detecting the omission of confounders with 
minimal influence on the mediation path.

As the confounding effect increases to a medium level 
(0.39), BCFI values decline significantly for models omitting 
confounders. The median BCFI falls below 0.95 when one 
confounder is omitted, while the entire distribution drops 
below 0.95 when both confounders are omitted, indicating a 
clear deterioration in model fit. As the sample size increases, 
the variability of BCFI decreases.

7.2.2. Model Fit Classification Based on 90% Credible  
Interval of BCFI
The model fit classification using BCFI is illustrated in 
Figure 13b.

For the correctly specified model and models omitting 
confounders with no or small effects (i.e., 0 or 0.14), most 
replications fall into the “good fit” category when the sam
ple size is 200 or larger. However, with a sample size of 100, 
a greater proportion are classified as “inconclusive,” indicat
ing that BCFI has limited sensitivity to the omission of 
minor confounders.

As the confounding effect increases to 0.39 (medium- 
sized), the “good fit” classification decreases when con
founders are omitted. When one confounder is omitted, 
approximately 40–50% of replications are classified as “poor 
fit,” with the remaining as “inconclusive.” When two con
founders are omitted, nearly 100% of replications indicate 
“poor fit,” highlighting BCFI’s effectiveness in detecting 
severe confounder omissions.

Smaller sample sizes introduce more uncertainty, leading 
to a higher proportion of “inconclusive” classifications, even 
for correctly specified models.

7.2.3. Comparison of BTLI and BCFI
The results of the BTLI are presented in Figure 14a and b.

The distribution and model fit classification of BTLI fol
low a similar pattern to BCFI. However, BTLI shows slightly 
greater sensitivity to confounder omission. Its values shift 
downward more noticeably, indicating a stronger response 
to model misspecifications. Additionally, a higher propor
tion of replications are classified as “poor fit” with BTLI 
compared to BCFI, suggesting BTLI is more effective in 
detecting the negative impact of confounder omission on 
model fit.

7.3. Ĉadj

Figure 15a and b illustrate the distribution and model fit 
classifications based on Ĉadj; respectively. The plots are 
structured according to the magnitude of the indirect paths, 
sample size, and levels of confounding effects, providing a 
comprehensive view of how these factors influence model fit 
evaluation.

7.3.1. Distribution of Ĉadj

When the confounding effect is 0 or 0.14 (small), Ĉadj val
ues remain consistently high for both the correctly specified 
model and the model omitting confounders, with minimal 
variation. As a result, the entire distribution of Ĉadj stays 
above 0.95 for sample sizes of 200 and 400. However, for a 
sample size of 100, the lower whisker falls below 0.95, indi
cating increased variability and reduced sensitivity in smaller 
samples.

When the confounding effect reaches a medium level 
(0.39), the distributions of Ĉadj become more distinct across 
model conditions. The central tendency of Ĉadj drops below 
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0.95 when omitting one confounder and falls further below 
0.90 when omitting two confounders, reflecting greater sen
sitivity to model misspecification. Additionally, as the sam
ple size increases, the variability of Ĉadj decreases, leading to 
more stable estimates.

7.3.2. Model Classification Using the 90% Credible  
Interval of Ĉadj

When the confounding effect is absent or small (i.e., 0.14), 
both the correctly specified model and the model omitting 
confounders are predominantly classified as “good fit” for 

sample sizes of 200 and 400. However, with a sample size of 
100, a larger proportion of replications fall into the 
“inconclusive” category, reflecting increased uncertainty due 
to smaller sample sizes.

When the confounding effect is medium (i.e., 0.39), fewer 
than 5% of replications are classified as “good fit” when one 
confounder is omitted. When both confounders are omitted, 
the misfit becomes so severe that nearly 100% of replica
tions are classified as “poor fit.” With a small sample size of 
100, a larger proportion of cases fall into the “inconclusive” 
category, due to the large variability in the posterior 
distribution.

Figure 13. Bayesian CFI for omitting confounders using the diffuse priors.
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7.4. PPP

Figure 16a and b demonstrate the distribution of PPP and 
the rate for detecting misfit using different cutoff values.

7.4.1. Distribution of PPP
For correctly specified models, PPP values remain nicely 
around 0.5 across all conditions. This confirms PPP cor
rectly identifies well-specified models.

When the confounding effect is small (i.e., 0.14), PPP 
values for the misspecified model shift downward but 

generally remain above 0.05. However, when the confound
ing effect is medium (i.e., 0.39), PPP values drop further 
below 0.05 for models omitting confounders, particularly 
when the sample size is 200 or 400 or when both confound
ers are omitted.

7.4.2. Rejection Rate Using PPP with Different Cutoffs
Figure 16b illustrates the misfit detection rates based 
on PPP.

A model is classified as lacking a good fit if its PPP falls 
below a specified cutoff value.

Figure 14. Bayesian TLI for models omitting confounders using the diffuse priors.
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The rejection rate for a correctly specified model remains 
below 5% when using thresholds of 0.05 and 0.10, and 
increases to approximately 10% with a threshold of 0.15.

For models that ignore confounders, rejection rates rise 
as sample size increases, mediation effects strengthen, and 
confounding effects become more pronounced.

Ignoring two confounders leads to more severe model 
misspecification than omitting a single confounder. When 
the confounding effect is small (i.e., 0.14), the rejection rates 
for models ignoring two confounders range from 50% to 

70% with a sample size of 400 and thresholds of 0.10 
and 0.15.

When the confounding effect is medium (i.e., 0.39), the rejec
tion rate for models omitting one confounder exceeds 80% when 
the sample size is 200 or larger. For models ignoring two con
founders, the rejection rate surpasses 80% even with a sample size 
of 100 and reaches 95% when the sample size is 200 or above.

The choice of cutoff value impacts the rejection rates. Stricter 
thresholds (0.05) result in lower rejection rates, potentially over
looking moderate misfit, whereas more lenient thresholds (0.10, 

Figure 15. Ĉadj for models ignoring confounders.
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0.15) increase sensitivity to misfit but also raise the likelihood of 
mistakenly rejecting a correctly specified model.

Additionally, stronger mediation effects amplify the 
detectability of confounder omission, particularly in smaller 
samples, highlighting an interaction between mediation 
strength and model misfit detection.

7.5. Summary

The effectiveness of fit indices in detecting the omission of 
confounders varies in sensitivity and performance.

BRMSEA, BCFI, BTLI, and Ĉadj effectively identify con
founder omission when the confounding effect is substantial 

Figure 16. PPP for omitting confounders using the diffuse priors.
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(0.39), with a higher proportion of “poor fit” classifications 
as sample size increases. BTLI is slightly more sensitive than 
BCFI, showing a greater downward shift in values and a 
higher proportion of “poor fit” when confounders are omit
ted. Ĉadj is more reliable for confirming correctly specified 
models but slightly less effective in detecting model misspe
cification than BTLI.

PPP performs well in detecting confounder omission, 
particularly when the confounding effect is moderate (0.39), 
where rejection rates exceed 95% for sample sizes of 200 
and above. However, it is less sensitive to smaller confound
ing effects or limited sample sizes.

Overall, BRMSEA, BCFI, BTLI, and Ĉadj are robust in 
identifying moderate to severe confounder omissions, while 
PPP excels in detecting extreme cases.

8. Prior Sensitivity Analysis

To evaluate the sensitivity of each index to prior specifica
tion, we conducted factorial ANOVA to estimate the per
centage of sampling variance g2 attributable to prior 
specification. Table 2 values for prior specification, model 
specification, and their interaction, based on a sample size 
of 100.

Based on the results in Table 2, prior specification con
tributes a very small proportion of variance across all fit 
indices, with values consistently below 0.003. This suggests 
that different priors have little impact on the variation in fit 
indices compared to model specification.

The model specification consistently explains the largest 
proportion of variance in all fit indices across conditions. 
The variation accounted for by the model specification 
increases as the mediation effect increases but decreases as 
the confounding effect (i.e., bk) increases.

Among all the indices under investigation, the greater 
portion of the variation in Ĉadj is explained by the model 
specification than other indices.

9. Discussion and Conclusion

Mediation analysis is a widely used approach for examining 
causal relationships between independent and dependent 
variables. This framework has been extended to incorporate 
latent variables within mediation paths, allowing for a more 
comprehensive representation of complex psychological and 
social processes. However, valid inferences in latent medi
ation analysis hinge on two critical assumptions: the correct 
specification of the measurement model for latent variables 
and the absence of unmeasured confounders. Violations 
of these assumptions introduce model misspecifications, 
potentially distorting results and undermining the credibility 
of findings.

This raises a fundamental question: How can approxi
mate fit indices and PPP serve as diagnostic tools to help 
researchers evaluate model fit and detect these violations? 
Addressing this question is essential for improving the reli
ability of mediation analysis in applied research.

9.1. Highlights of the Results

In response to the practical need for detecting model 
assumption violations in latent mediation models, this study 
systematically evaluates the performance of Bayesian 
approximate fit measures and the posterior predictive p- 
value (PPP) in identifying model misspecifications in the 
presence of latent confounders. We examine various sources 
of misspecification, including errors in the measurement 
model of the mediator, misspecifications in the measure
ment model of latent confounders, and the omission of con
founders. Additionally, we assess the sensitivity of these fit 
measures to different prior specifications. Our simulation 
study employs a comprehensive design, varying mediation 
effects, confounding effects, sample sizes, and prior specifi
cations to provide a robust assessment of fit index perform
ance across diverse conditions.

The study revealed that ignoring the mediator’s measure
ment structure and using the standardized total score led to 

Table 2. Percentage of variance g2 in fit indices explained by model specification (MS) and prior specification (prior) and their interaction when the sample size 
is 100.

bk ¼ 0 bk ¼ 0:14 bk ¼ 0:39

MS Prior Interaction MS Prior Interaction MS Prior Interaction

a ¼ b ¼ 0:14
CFI 0.708 0.002 0 0.629 0.002 0 0.531 0.002 0
TLI 0.716 0.003 0.001 0.644 0.003 0.001 0.536 0.003 0
RMSEA 0.672 0.003 0 0.609 0.003 0 0.554 0.002 0
ppp 0.481 0.002 0.001 0.411 0.002 0.001 0.44 0.002 0.001
Ĉadj 0.763 0.002 0.001 0.727 0.002 0.001 0.640 0.001 0.001

a ¼ b ¼ 0:39
CFI 0.752 0.001 0 0.679 0.001 0 0.603 0.001 0
TLI 0.761 0.002 0.001 0.695 0.002 0.001 0.608 0.002 0
RMSEA 0.707 0.002 0 0.65 0.002 0 0.619 0.002 0
ppp 0.502 0.002 0.001 0.431 0.002 0.001 0.49 0.001 0.001
Ĉadj 0.798 0.001 0.001 0.764 0.001 0.001 0.700 0.001 0.001

a ¼ b ¼ 0:59
CFI 0.801 0.001 0 0.738 0.001 0.001 0.696 0.001 0
TLI 0.809 0.001 0.001 0.751 0.002 0.002 0.698 0.001 0
RMSEA 0.749 0.001 0 0.695 0.001 0 0.698 0.001 0
ppp 0.531 0.002 0.001 0.459 0.002 0.001 0.556 0.001 0.001
Ĉadj 0.836 0.001 0.001 0.803 0.000 0.001 0.757 0.001 0.001

MS: model specification; Prior: prior specification; Interaction: MS� Prior; a, b represent the mediation paths, and bk is the magnitude of the confounding effect.
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severe misfits, which were effectively detected by BRMSEA, 
BCFI, BTLI, and Ĉadj with increased certainty with a larger 
sample size. When the sample size is 200 and above, the 
PPP is highly sensitive to misspecification of the measure
ment model with a high proportion of “poor fit.” 
Additionally, omitting a cross-loading for the latent medi
ator also led to detectable misfit, as identified by both the 
Bayesian SEM approximate fit indices and PPP. However, 
with a sample size of 100, the increased uncertainty in 
model fit classification resulted in a larger proportion of 
replications being classified as “inconclusive.”

Interestingly, the inclusion of true confounders reduces 
the misfit introduced by an incorrect measurement model 
for the mediator, making it more difficult to detect such 
misspecifications, especially when the confounding effect is 
moderate. Additionally, as the strength of the mediation 
path increases, the impact of measurement model misspeci
fication on overall model fit becomes more pronounced, 
leading to greater misfit.

Ignoring the measurement model of the confounders also 
leads to misfits, which can be detected by the Bayesian 
approximate fit indices and PPP. The misfit is substantial 
only when the confounding effect is medium-sized or larger. 
When the confounding effect is absent or small, ignoring 
the measurement model of the confounder has little impact 
on the model misfit. Additionally, the misfit of the con
founder to the mediator-outcome path has a stronger influ
ence on the overall model fit.

The omission of the confounder of the mediator- 
outcome path also resulted in substantial misfits, particularly 
when the confounding effect was medium or large. 
BRMSEA, BCFI, BTLI, Ĉadj; and PPP demonstrated high 
sensitivity to these omissions. The rates for classifying a 
misspecified model as “good fit” decrease as the coefficient 
of the indirect path increases.

Regarding the indices under investigation, the PPP is 
more sensitive to the influence of the sample size and per
forms outstandingly when the sample size is 200 or above. 
When the sample size is small (e.g., 100), the Bayesian 
approximate fit indices show better performance in detect
ing misfit. Regarding prior sensitivity, the choice of weakly 
informative prior has minimal effect on the variability of 
the fit indices.

9.2. Recommendation to Practitioners

For practitioners, our results provide clear guidance on 
choosing fit indices based on the type of model misspecifi
cation in latent mediation analysis. When detecting meas
urement model misspecifications, BTLI was the most 
sensitive, followed by BCFI, Ĉadj; and BRMSEA, with PPP 
serving as a supporting indicator. When the confounder in 
the mediator-outcome path was misspecified, BTLI, BCFI, 
Ĉadj; and BRMSEA performed similarly for sample sizes of 
200 or larger. However, with smaller samples, BTLI and 
BCFI were more reliable than BRMSEA and Ĉadj; as they 
had a lower tendency to falsely classify misspecified models 

as “good fit.” In this scenario, PPP showed high sensitivity, 
achieving high rejection rates even at a sample size of 100. 
When detecting omitted confounders, all fit indices effect
ively identified the omission when the confounder had a 
moderate or strong effect. BTLI and BCFI were preferred 
over BRMSEA and Ĉadj: PPP performed well but was most 
reliable when the sample size was at least 200.

We would like to note that while BCFI and BTLI showed 
strong and consistent performance across the conditions 
evaluated in the current study, their sensitivity to certain 
model features (e.g., degrees of freedom, model complexity) 
is well documented in the literature. For example, BTLI (or 
TLI) is sensitive to model complexity and tends to under
estimate model fit in more complex models, whereas BCFI 
(or CFI) is designed to be less sensitive to model complexity 
but can still be influenced under certain conditions (Fan & 
Sivo, 2007).

All the fit indices and the PPP evaluated in the current 
study are available or extractable from widely used software 
such as Mplus (Muth�en & Muth�en, 1998–2017) and the R 
blavaan package (Merkle & Rosseel, 2015). Given this 
accessibility, when applying these fit indices in practice, we 
recommend that researchers avoid relying on a single fit 
index. Instead, they should consider multiple indices to 
obtain a more comprehensive assessment of model fit. 
Specifically, BCFI and BTLI can be examined for their sensi
tivity to model misspecifications, while BRMSEA provides 
additional information on model complexity. Ĉadj can serve 
as a supplementary measure. PPP can be used as a support
ing index, particularly when the sample size is sufficient 
(e.g., 200 or more), as it becomes more effective in detecting 
misfit under these conditions. By considering multiple indi
ces together, researchers can make more informed decisions 
about the model adequacy and potential specification errors.

9.3. Impact of Model Complexity on Bayesian Fit Indices

The effective number of parameters (pD) serves as an indi
cator of model complexity and the computational effort 
required for estimation. Due to the incorporation of prior 
information, pD is typically smaller than the actual number 
of parameters, leading to a difference between Bayesian and 
maximum likelihood (ML) degrees of freedom. This discrep
ancy directly affects the behavior of Bayesian fit indices.

BRMSEA tends to be inflated in more complex models 
due to reduced degrees of freedom, even when model misfit 
is minimal. BTLI is highly sensitive to degrees of freedom— 
specifically, the difference in model complexity between the 
baseline and target models—making it more likely than 
other indices to classify simpler models as having good fit 
given the same level of misfit. Compared to BTLI, BCFI is 
less influenced by Bayesian model complexity, as it quanti
fies improvements in chi-square statistics relative to the null 
model. In contrast, Ĉadj is less effective in detecting misfit 
in simpler models as its values tend to be larger in such 
cases. Finally, PPP is highly sensitive to sample size, making 
it less reliable for small samples. The performance of 
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individual indices will depend on the complexity of the 
model. Therefore, performance issues should be interpreted 
in light of model-specific features.

In this study, the effective number of parameters (pD) 
was derived using the DIC-based method, consistent with 
the implementation in Mplus. We acknowledge that DIC- 
based pD can underestimate model complexity in certain 
cases, which may, in turn, affect the behavior of approxi
mate fit indices, as discussed by Garnier-Villarreal and 
Jorgensen (2020). Alternative approaches, such as LOO- or 
WAIC-based pD calculations available in blavaan, may 
offer improved estimates of model complexity under specific 
conditions.

9.4. Future Methodological Considerations

This study focused on a specific latent mediation model 
with defined paths and measurement structures. Although 
this approach provides valuable information, the findings 
may not generalize to other model configurations. Exploring 
different types of mediation models, including more com
plex structures with multiple mediators and outcomes, 
would enhance the generalizability of the results.

Another limitation lies in the assumption of normally 
distributed latent variables and errors. This assumption may 
not always hold in practical scenarios, potentially affecting 
the robustness of the findings. Future research should inves
tigate the performance of Bayesian fit indices under viola
tions of normality, including scenarios with skewed or 
heavy-tailed distributions.

While we examined the impact of diffuse and weakly 
informative priors, it may also be beneficial to examine a 
fuller spectrum of prior distributions that might be used in 
Bayesian analysis. Considering a wider variety of prior dis
tributional forms, including informative priors that incorp
orate substantive knowledge, would provide a more 
comprehensive understanding of their influence on 
Bayesian fit indices in the context of latent mediation 
modeling.

Additionally, Bayesian SEM fit indices account for 
model complexity through the effective number of param
eters (pD). In the present study, we adopted the DIC- 
based approach for estimating pD, which is known to 
underestimate model complexity in certain scenarios. 
Other approaches, such as LOO-based and WAIC-based 
methods, offer alternative calculations of pD and may 
yield different behavior in fit indices (Garnier-Villarreal 
& Jorgensen, 2020). Future studies could explore the 
impact of these alternative pD calculations to further 
refine the evaluation of model fit in Bayesian latent medi
ation analysis.

We believe that the current investigation helps to shed 
light on the performance of these common fit measures for 
the latent mediation model. This knowledge will help 
applied researchers have a more complete understanding of 
the impact of misspecifications when implementing this 
model in practice.
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