
Brief Reports

Applied Psychological Measurement
2023, Vol. 47(1) 64–75
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/01466216221124604
journals.sagepub.com/home/apm

Applying Negative Binomial
Distribution in Diagnostic
Classification Models for
Analyzing Count Data

Ren Liu1, Ihnwhi Heo1
, Haiyan Liu1, Dexin Shi2, and Zhehan Jiang3

Abstract
Diagnostic classification models (DCMs) have been used to classify examinees into groups based
on their possession status of a set of latent traits. In addition to traditional item-based scoring
approaches, examinees may be scored based on their completion of a series of small and similar
tasks. Those scores are usually considered as count variables. To model count scores, this study
proposes a new class of DCMs that uses the negative binomial distribution at its core. We
explained the proposed model framework and demonstrated its use through an operational
example. Simulation studies were conducted to evaluate the performance of the proposed model
and compare it with the Poisson-based DCM.
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In operational tests, examinees may be scored based on their completion of a series of small and
similar tasks. For example, students are asked to read out loud 50 words; children are asked to
memorize the sequence of 10 animals; patients are asked to select from a list of 20 symptoms. If
the purpose of those tests were to classify examinees as master/non-masters of a group of abilities
or bearer/non-bearer of a group of disorders, diagnostic classification models (DCMs) could be
candidate scoring models. When responses on those types of tasks are scored, they are usually
treated as count variables. For the 50 words that students read out loud, we typically do not treat
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them as 50 items because they are quite similar. They were typically given to students, for
example, in five blocks of 10 words each. When students’ responses are scored, we count how
many words in each block they answer correctly. For this example, each student would get five
counts, one for each block. Those five counts are used to estimate their latent trait characteristics. If
DCMs were applied to score count data, one could use the Poisson-based DCM (PDCM; Liu et al.,
2021) that has recently been proposed. A feature of the PDCM, or any statistical model that uses a
Poisson distribution, is that the mean and variance have been fixed to be equal. This constraint may
be unnecessary and sometimes unrealistic given that the variance is often greater than the mean. To
relax this constraint, this study proposes a more flexible DCM framework for scoring count data
that comes from a series of small, and sometimes repetitive tasks. The proposed framework uses
the negative binomial distribution at its core, which allows the mean and variance of the count
variable to be separately estimated. In the next section, we first introduce the necessary theoretical
foundations before presenting our proposed modeling framework.

Theoretical Framework

Diagnostic Classification Models

Diagnostic classification models are multidimensional confirmatory latent class models. They
could be appropriate scoringmodels when a researcher’s primary goal is to classify examinees into
pre-defined groups (aka latent classes). To form those groups, one needs to first hypothesize at
least two latent traits (commonly known as attributes), and treat them as categorical variables,
which can be either binary (0 or 1, representing non-possession and possession of attributes) or
polytomous (e.g., 0, 1, 2, representing non-possession, partial possession, and full possession of
attributes). For K attributes, the combination of attribute possession groups forms 2K possible
latent classes. Example applications of DCMs include obtaining student reading skill profiles
(e.g., George & Robitzsch, 2021; Jang et al., 2013), obtaining student math and science skill
profiles (e.g., Kabiri et al., 2017; Lee et al., 2011), classifying people with personality types (e.g.,
Liu & Shi, 2020; Xi et al., 2020), and diagnosing mental disorders for patients (e.g., de la Torre
et al., 2018; Templin & Henson, 2006).

Although many DCMs have been proposed with different parameterizations of the measurement
component and/or the structural component, we can use a general form of DCM as an example to
introduce the specification of a DCM. When item responses are scored in a binary fashion, the
general form of DCMs is the log-linear cognitive diagnosis model (LCDM; Henson et al., 2009). Let
αc ¼ fα1, …, αKg index 2K latent classes that contain different combinations of the K attributes.
The LCDM defines the probability of examinees with latent class c scoring a “1” on item i as

PðXi ¼ 1jαcÞ ¼
exp
�
ω0, i þ ωT

i hðαc, qiÞ
�

1þ exp½ω0, i þ ωT
i hðαc, qiÞ�

(1)

where ω0, i is the intercept, ωT
i hðαc,qiÞ¼

PK
k¼1

ω1,i,kðαc,kqi,kÞþ
PK�1

k¼1

PK
k 0¼kþ1

ω2,i,k,k 0 ðαc,kαc,k 0qi,kqi,k 0 Þþ
…þωK,i,1,…,K∏K

k¼1ðαc,kqi,kÞ including all main effects and interaction effects, and qi is a vector
of 1s and 0s indicating whether item imeasures each attribute. The qi is usually shown in an I ×K
matrix commonly known as a Q-matrix. The core component of the LCDM is the
ω0, i þ ωT

i hðαc, qiÞ, on which constraints can be added to arrive at most of the earlier DCMs such
as the deterministic inputs, noisy, and gate” (DINA) model (Haertel, 1989; Junker & Sijtsma,
2001), and the linear logistic model (LLM; Maris, 1999). The DINA model can be seen as the
LCDM with only intercepts and the highest-order interaction terms, and the LLM can be seen as
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the LCDM with only intercepts and main effects. By integrating the Poisson distribution into the
core component of the LCDM, Liu et al. (2021) developed the PDCM.

Poisson Distribution and the PDCM Framework

The Poisson distribution is commonly used to analyze count variables. It expresses the probability
that the number of events ðsÞ in a defined time interval as

PðX ¼ sÞ ¼ λs

s!expλ
, λ> 0 (2)

where λ is the rate parameter, representing both the mean and variance of X .
The framework of PDCMs uses the Poisson distribution at their core, which expresses the

probability of examinees with a given latent class obtaining a count score of s on item i as

PðXi ¼ sjαcÞ ¼ λsci
s!expλci

, (3)

where λci ¼ ω0, i ×ωT
i hðαc,qiÞ. Comparing Equations 1–3, we can see that the framework of

PDCMs is structured similarly to the probability mass function of the Poisson distribution while
using the core component of the LCDM. The count score s refers to the number of correct or
incorrect responses in one item block. For example, if an examinee gets 9 letters correct in a block
of 10 letters on a letter recognition exam, their s = 9 for that item block if one chooses to model
correct counts, or s = 1 for that item block if one chooses to model incorrect counts.

Negative Binomial Distribution and Its Use in Item Response Theory Models

When we use Poisson-based models to analyze count variables, the data must conform to
equidispersion where the mean and variance are equal because there is only one parameter λ.
However, variance is often greater than the mean in an operational dataset. For example, the
average amount of incorrectness in 10 letter recognition tasks may be one, but the variance could
be greater than one. As an alternative to the Poisson distribution, the negative binomial distri-
bution is more flexible by allowing the mean and variance to be different. The probability mass
function of the negative binomial distribution can be expressed as

PðX ¼ sÞ ¼
�
sþ f� 1

s

��
μ

μþ f

�s�
f

μþ f

�f

(4)

where μ is the mean parameter, and f is the parameter that controls dispersion so that the variance
can be written as μþ μ2

f . The negative binomial distribution has shown its merit in dealing with
overdispersion in the fields of psychology (e.g., Gardner et al., 1995), sociology (e.g., Land et al.,
1996), ecology (e.g., Ver Hoef & Boveng, 2007), and medicine (e.g., Miaou, 1994).

In the item response theory (IRT) framework, the negative binomial distribution has also been
applied in studies such as Hung (2012), and Magnus and Thissen (2017). Following the pa-
rameterization used in Equation (3), the one-parameter form of a negative binomial IRTmodel can
be written as

PðXi ¼ sjθeÞ ¼
�

Γ
�
sþ r�1

i

�
Γðsþ 1ÞΓðr�1

i Þ
��

expðθe � biÞ
r�1
i þ expðθe � biÞ

�si� r�1
i

r�1
i þ expðθe � biÞ

�r�1
i

(5)
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where θe represents examinee e’s latent trait, bi represents the difficulty for item i, and r�1
i is the

dispersion parameter equivalent to the f in equation (4). We could see that equation (5). is a direct
extension from equation (4). where the μ is specified as expðθe � biÞ.

A Framework of Count Diagnostic Classification Models

The framework of Count Diagnostic Classification Models (CDCMs) is developed based on 1)
applying the negative binomial distribution to the general form of DCMs in a similar fashion to
how it is applied to IRT models; and 2) the relationship between the general form of DCMs and its
special cases.

Like the PDCM framework, we extract the core of the LCDM: ω0, i þ ωT
i hðαc,qiÞ to replace

the μ in equation (4). as the mean. As a result, the general form of the CDCMs can be written as

PðXi¼sjαcÞ¼
�

Γ
�
sþr�1

i

�
Γðsþ1ÞΓðr�1

i Þ
��

exp
�
ω0,iþωT

i hðαc,qiÞ
�

r�1
i þexp½ω0,iþωT

i hðαc,qiÞ�
�si�

r�1
i

r�1
i þexp½ω0,iþωT

i hðαc,qiÞ�
�r�1

i

(6)

Comparing equation (6) to equation (5), we can see that the negative binomial distribution is
applied to the DCMs in a similar fashion to that in IRT models where we replaced expðθe � biÞ
with exp½ω0, i þ ωT

i hðαc,qiÞ�. To ensure that possessing more attributes does not decrease the
probability of having a higher score, the main effect and interaction effect parameters are all
constrained to be non-negative. Similar to equation (5), r�1

i controls for the variance where a
positive value signifies that the variance is greater than the mean. The identification of the
proposed CDCM requires considerations in combining the identification requirements of a general
DCM and the special “item block” property of the CDCM. Gu and Xu (2019) and Xu and Zhang
(2016) have demonstrated that the identifiability of a DCM only depends on the Q-matrix
structure. Following their framework, two necessary conditions are required to identify the
proposed CDCM. First, the Q-matrix needs to be “complete” (Chiu et al., 2009), meaning that it
can differentiate all attribute profiles. Second, each attribute needs to be associated with at least
three item blocks. The number of tasks within each item block is not much of a concern. Note that
the condition of three item blocks is a necessary but not sufficient condition for identification
because one needs to consider the degrees of freedom based on the different number of attribute
profiles and loadings in the Q-matrix.

After deriving the general form of the CDCM framework from the LCDM, we can re-
parameterize the ω0, i þ ωT

i hðαc, qiÞ component to obtain other subsumed models for count data.
For example, to form a DINA-type model, we replace theω0, i þ ωT

i hðαc, qiÞ in the LCDMwith an
intercept ω0, i and an effect ω1, i ∏K

k¼1 α
qi, k
c, k that signifies all the effects of all related attributes. The

resulting CDCM-DINA can be written as

PðXi¼sjαcÞ¼
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�
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(7)
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Similarly, if we replace the ω0, i þ ω1, i ∏K
k¼1 α

qi, k
c, k from the CDCM-DINAwith an interceptω0, i

and the main effects of all related attributes
PK
k¼1

ω1, i, kðαc, kqi, kÞ, we can express the CDCM-LLM
as

PðXi ¼ sjαcÞ ¼
�
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�
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(8)

Through these two examples, we hope readers can see how other DCMs may also be for-
mulated within the CDCM framework to analyze count data.

Operational Study

We aim to achieve two purposes through conducting this operational study. The first is to
demonstrate the use of the CDCM, and the second is to compare its performance with the PDCM.
The dataset was used in Liu et al. (2021) which contains 808 examinees’ responses to 24 item
blocks that measure three attributes. Item blocks 1–8 measure number recognition, item blocks 9–
16 measure color recognition, and item blocks 17–24 measure object recognition. As a result, a
simple-structureQ-matrix was developed based on the content specification. In theQ-matrix, each
item measures one attribute. In each item block, there are 10 numbers, colors, or objects, meaning
that the maximum count score in each block (aka item) is 10. A preliminary review of the dataset
shows that most examinees got most of the items correct. Therefore, we chose to model the
incorrect count in each item. If other researchers choose to do this in their studies, they want to
make sure that the interpretation of the attribute possession status ðαkÞ aligns with the direction of
the number of counts (whether it is a count of incorrect answers or correct answers).

Figure 1. Mean of the posterior distribution for the intercept ðω0, iÞ and main effect ðω1, iÞ parameters.
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Fitting the CDCM

We used the Stan (Carpenter et al., 2017) program for parameter estimation. The Stan code used to
estimate the CDCM is shared in the Supplemental Appendix. In the measurement model, we
estimated 24 intercepts ðω0, iÞ, 24 main effects ðω1, iÞ, and 24 dispersion parameters ðr�1

i Þ. Similar
to Ghosh et al. (2018) and Liu et al. (2021), we implemented the following priors for the above-
mentioned parameters: ω0, i ∼Normalð0; 2Þ, ~ω1, i ∼Normalð0; 2Þ, ri ∼Cauchyð0; 5Þ. We ran four
chains with a length of 20,000, where parameters were sampled from the last 10,000 draws. The
chains converged with Gelman–Rubin’s bR values (Gelman & Rubin, 1992) all close to 1.00. The
general CDCM fit the data well with posterior predictive p-values (Gelman et al., 2013) at 0.54.

Mean of the posterior distribution for each parameter was used as a point estimate and dis-
played in Figure 1. All the intercepts were below 0 and all the main effects were (constrained to be)
above 0. Typically, we say that an item is good when it has high discrimination where small
intercepts and large main effects help differentiate between those who possess and not possess an
attribute. The parameter estimates show that items in this dataset are of good quality. Items 1–8
(measuring α1) had larger main effects and smaller intercepts than items 17–24 (measuring α3),
which also had larger main effects and smaller intercepts than items 9–16 (measuring α2). Figure 2
shows the standard deviation of the posterior distribution of the parameters. Generally, parameters
with larger absolute mean values had larger standard deviations in their distributions, but all of
them were below 0.12. Results for the ri parameters are shown in Figure 3. We can see all the ri
values were positive, meaning that the variance of examinees’ responses on each item is greater
than the mean. Item 4 had the largest r value: 0.012, which is still very small. Small ri values (i.e.,

large r�1
i values) lead to a large denominator of the equation for variance

�
μþ μ2

r�1
i

�
, which means

that the difference between the variance and mean was small for each item.

Comparing the Results Between the CDCM and the PDCM

If the difference between the variance and the mean was small enough under the CDCM, we could
also fit the PDCM to the dataset and examine the differences. Therefore, we also fit the PDCM to
the dataset, using the same Stan specifications. Although parameter estimates are not directly
comparable, we compared model fit and classification agreement between the CDCM and the
PDCM. Regarding relative model fit, we computed the leave-one-out cross-validation information
criterion (LOOIC; Vehtari et al., 2017), where smaller values indicate better fit. The LOOIC values
for the CDCM and the PDCM were 72.3 and 72.5, respectively. Using the standard errors of the
difference in their expected predictive accuracy estimates, we found that the two models did not fit

Figure 2. Standard Deviation of the posterior distribution for the intercept ðω0, iÞ and main effect ðω1, iÞ
parameters.
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significantly differently. Consider that the PDCM is more restrictive than the CDCM, the results
suggest that the item-level variance of examinees’ responses was not much different from the
mean. This lack-of-difference is supported by the small ri values that wementioned in the previous
section. Regarding classification agreement, results show that every single examinee (i.e., 100%)
was classified with the same attribute profile. In other words, if a researcher fit both the CDCM and
the PDCM to this dataset, they would get identical results on examinee scores.

But what if there were relatively larger differences between the mean and the variance (i.e.,
larger ri values)? Howwould that affect the results of fitting the PDCM and the CDCM?We aim to
explore that through a simulation study in the next section.

Simulation Study

The above operational study demonstrated similar performance of the PDCM and the CDCM
when the data dispersion is small with ri values close to 0. The purpose of the current simulation
study is two-fold: 1) to examine whether the CDCM could produce unbiased parameter estimates;
and 2) to investigate whether the CDCM performs better than the PDCM under different degrees
of data dispersion. The simulation study is couched in the operational study setting where we used
the parameters obtained from the operational study to represent real data situations.

Data Generation

To simulate 808 examinees’ responses to 24 item blocks, we used the mean of each parameter’s
posterior distribution that we obtained through the CDCM in the simulation study as the true
parameter values. We varied the dispersion parameter at two levels: small and large. For small
dispersion conditions, we sampled r�1 fromUniform ð0:8, 1:0Þ. We chose this range to mimic the
operational dataset used in Hung (2012). Since the mean of the distribution for each parameter was
close to one in our dataset, using r�1 ¼ 1, the standard deviation of responses in each item block

Figure 3. Mean and standard deviation of the posterior distribution for the inverse of the dispersion
parameter ðriÞ.
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would be around 1.41. This represents conditions with small dispersion. For large dispersion
conditions, we sampled r�1 from Uniform ð0:2, 0:4Þ. We chose this range to mimic the oper-
ational dataset used in Magnus and Thissen (2017). Using a mean of one and r�1 ¼ 0:2, the
standard deviation of responses in each item block would be around 2.45. This represents
conditions with a large dispersion. Using the above specifications, we generated 40 datasets using
R (R Core Team, 2019), where 20 used small dispersion parameters and 20 used large dispersion
parameters. Both the CDCM and the PDCM were fitted to each dataset.

Results 1: Parameter Recovery of the CDCM

To examine parameter recovery for the CDCM, we computed the mean bias and RMSE for each
parameter across iterations and listed them in Tables 1 and 2. Overall, the average bias for the
intercept parameters were 0.080 and 0.094 under the small and large dispersion conditions,
respectively. The average bias for the main effect parameters were 0.026 and 0.020 under the two
conditions, respectively. We also examined the accuracy of examinees’ attribute classifications.
The average attribute-wise classification accuracy was 0.984 and 0.981, for the small and large
dispersion conditions, respectively. The profile-wise classification accuracy was 0.848 and 0.835,
for the two conditions, respectively.

Table 1. Mean Bias for the Count Diagnostic Classification Model Parameters in the Simulation Study.

Item Intercept Main Effect

Small r Large r Small r Large r

1 0.092 0.101 0.003 �0.003
2 0.119 0.126 �0.048 �0.051
3 0.124 0.136 �0.059 �0.069
4 0.104 0.116 �0.044 �0.053
5 0.136 0.150 �0.047 �0.059
6 0.102 0.110 �0.059 �0.064
7 0.076 0.085 0.021 0.015
8 0.142 0.148 �0.023 �0.025
9 0.076 0.099 0.045 0.033
10 0.074 0.099 0.058 0.043
11 0.044 0.055 0.106 0.110
12 0.036 0.054 0.073 0.067
13 0.056 0.086 0.020 �0.005
14 0.039 0.057 0.064 0.059
15 0.044 0.060 0.088 0.086
16 0.028 0.036 0.097 0.107
17 0.105 0.120 0.009 0.002
18 0.051 0.062 0.061 0.060
19 0.067 0.084 0.039 0.029
20 0.056 0.068 0.065 0.061
21 0.085 0.098 0.032 0.026
22 0.072 0.078 0.037 0.041
23 0.101 0.117 0.018 0.009
24 0.090 0.109 0.063 0.050
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Results 2: Comparing the CDCM to the PDCM

We computed the classification accuracy of the CDCM and the PDCM for each dataset and
presented the results in Table 3. Overall, model selection has a larger impact than the change in the
relative data dispersion. In the operational study, we observed identical classification results
between the CDCM and the PDCM when the item-level r values were estimated to be very small.
In the simulation study, r values were larger than those in the operational study, and the PDCM

Table 2. Mean RMSE for the Count Diagnostic Classification Model Parameters in the Simulation Study.

Item Intercept Main Effect

Small r Large r Small r Large r

1 0.146 0.151 0.134 0.136
2 0.162 0.166 0.144 0.146
3 0.155 0.164 0.147 0.151
4 0.159 0.166 0.125 0.130
5 0.177 0.188 0.150 0.155
6 0.163 0.166 0.149 0.151
7 0.133 0.136 0.119 0.117
8 0.172 0.177 0.105 0.106
9 0.111 0.126 0.108 0.111
10 0.106 0.122 0.122 0.120
11 0.112 0.117 0.165 0.171
12 0.093 0.100 0.164 0.164
13 0.107 0.121 0.115 0.115
14 0.086 0.097 0.153 0.155
15 0.089 0.103 0.155 0.169
16 0.071 0.072 0.153 0.169
17 0.133 0.145 0.127 0.128
18 0.116 0.114 0.126 0.119
19 0.125 0.134 0.138 0.140
20 0.093 0.101 0.109 0.108
21 0.130 0.138 0.132 0.134
22 0.125 0.128 0.137 0.142
23 0.137 0.151 0.122 0.133
24 0.126 0.140 0.135 0.134

Table 3. Classification Accuracy of the Count Diagnostic Classification Model and the Poisson-Based
Diagnostic Classification Model in the Simulation Study.

Count diagnostic classification
model

Poisson-based diagnostic
classification model

Small r Large r Small r Large r

α1 0.985 0.984 0.822 0.819
α2 0.993 0.991 0.835 0.823
α3 0.974 0.969 0.779 0.766
Profile 0.848 0.835 0.600 0.587
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produced much worse classification results compared to the CDCM. Between the two levels of r
values, the classification results were very similar. Recall from our data generation, small and large
r values correspond to a standard deviation of around 1.41 and 2.45, respectively. In other words,
the PDCM was very sensitive to mean-variance mismatch, and it produced undesirable classi-
fication results even when the standard deviation was 0.4 above a mean of 1.

Discussion

Although measurement models with the negative binomial distribution involved are less com-
monly seen than those with the Poisson distribution, they are more flexible and may provide more
accurate parameter estimates if mean and variance are not equal.

The proposed CDCM framework may be used when: 1) multiple attributes are being tested
through a series of similar tasks, and 2) the purpose of the test is to classify examinees as mastery/
non-mastery or possession/non-possession of those attributes.

In that situation, we first recommend computing the mean and variance of the responses on
each item block. This could be an easy first step to get a sense of what we could expect for the
mean-variance differences. Then we recommend fitting both the PDCM and the CDCM to the
dataset and comparing model fit and classification agreement. If one obtains small ri estimates like
the operational study, they may also fit the PDCM (which forces the mean and variance to be
equal) and see if the CDCM fits significantly better. If the CDCM does not fit significantly better, it
should produce very similar, if not identical results compared to the PDCM. If the CDCM fit
significantly better and the classification agreement between the two models is low, one may
consider proceeding with then more flexible CDCM. When ri was at least not too small, the
simulation study demonstrated that the CDCM produced more accurate classification results than
the PDCM.

Although the CDCM seems more complicated than the PDCM, the number of parameters
being estimated is about the same between the two models. As demonstrated in the model
formulation, the number of CDCM parameters equals the number of PDCM parameters plus the
number of item blocks (one r for each item block). If there were 10 item blocks, the CDCM has 10
more parameters. In many situations, examinees’ responses to each item block that measure the
same attribute are very similar, we could also consider fixing the ri values to be the same across all
items (i.e., using r to replace ri). In our operational example, the parameter estimates for the ri
values were very similar, and it would make sense to consider adding this constraint. Studies such
as Hung (2012) had this similar constraint imposed in negative binomial IRT models. When the
number of items is large, this constraint may help reduce the number of unnecessary parameters.

For future research, the following directions may be considered. First, one could investigate the
effects of different prior distributions for ri. The priors for ri were sampled from a Cauchy
distribution in our study. The traditional prior choice would be an inverse gamma prior. Between
inverse gamma and Cauchy, we chose Cauchy in our example mainly because Gelman (2006) and
Polson and Scott (2012) argued that Cauchy performed better than inverse gamma. Specifically,
Gelman (2006) argued that if the variance estimates are very small (e.g., close to 0), inverse
gamma may be sensitive to inference problems. Although Cauchy is thick-tailed similar to inverse
gamma, Cauchy is even less informative compared to inverse gamma. Second, one could explore
other models that could also deal with the mean-variance mismatch in real data. For example, the
Conway–Maxwell–Poisson counts model (Conway & Maxwell, 1962) is a candidate model that
could deal with both underdispersion and overdispersion. Third, response time could be con-
sidered and jointly modeled with the count data. With the advancement in new technology,
tracking examinees’ response process and gathering such data has been easier. Joint modeling
could provide more accurate latent trait estimation as well as more informative feedback. We hope
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this line of research on using DCMs to analyze item responses from a series of simple tasks could
benefit operational testing practice.
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