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Abstract
The use of exponential random graph models (ERGMs) 
is becoming prevalent in psychology due to their ability to 
explain and predict the formation of edges between ver-
tices in a network. Valid inference with ERGMs requires 
correctly specifying endogenous and exogenous effects 
as network statistics, guided by theory, to represent the 
network-generating process while ensuring key effects shap-
ing network topology are not omitted. However, specifying 
a comprehensive model is challenging, particularly when re-
lying on a single model. Despite this, most applied research 
continues to use a single ERGM, raising two concerns: 
Selecting misspecified models compromises valid statistical 
inference, and single-model inference ignores uncertainty in 
model selection. One approach to addressing these issues is 
Bayesian model averaging (BMA), which evaluates multiple 
candidate models, accounts for uncertainty in parameter es-
timation and model selection, and is more robust to model 
misspecification than single-model inference. This tutorial 
provides a guide to implementing BMA for ERGMs. We 
illustrate its application using data from a college friend-
ship network, with a supplementary example based on the 
Florentine marriage network; both focus on averaging ex-
ogenous covariate effects. We demonstrate how BMA incor-
porates theoretical considerations and addresses modelling 
challenges in ERGMs, with annotated R code provided for 
replication and extension.
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1   |  INTRODUCTION

1.1  |  Relational data and social network analysis

Individuals, each possessing unique psychological and behavioural attributes, engage in interactions 
within various social and behavioural contexts. These interactions give rise to structured patterns, 
which manifest as social networks known as systems of relationships among individuals (e.g., Allan & 
Phillipson, 2017; Basu & Sen, 2021; Grund & Densley, 2012, 2015; Grunspan et al., 2014; Liu et al., 2018, 
2021; McElroy et al., 2019; Pachucki & Breiger, 2010). When such interactions are recorded, they are 
represented as relational data, which differ from non-relational data. While non-relational data consist 
of measurements that describe individual characteristics in isolation, relational data capture the pres-
ence, directionality, and strength of connections among individuals. As such, relational data provide 
a powerful lens for understanding individuals both in terms of their own attributes and within the 
broader social environments that shape their behaviour and experiences.

When research questions involve relational data, social network analysis offers a set of statistical 
tools for modelling and interpreting the structure and dynamics of social interactions. Social network 
analysis enables the investigation of social processes by capturing and analysing patterns of relationships 
within networks (Borgatti et al., 2006; Cranmer et al., 2020; Scott, 2017; Wasserman & Faust, 1994). In 
recent years, social network analysis has gained growing attention in psychology, as it provides a novel 
perspective through which classical psychological questions can be revisited and reinterpreted (e.g., 
Broda et al., 2023; Burt et al., 2013; Gilman et al., 2022; Massidda et al., 2016). Given its versatility and 
broad applicability, it is important to critically examine the methodological foundations and modelling 
strategies available within the social network analysis framework to fully leverage its potential in psy-
chological research.

1.2  |  Modelling social networks and our focal model

A range of statistical methods has been developed to study the structure and dynamics of social 
networks, spanning both cross-sectional and longitudinal data. The present study focuses on cross-
sectional settings, where many of these methods are commonly applied in psychological research 
(but see Broda et al., 2023, for approaches to longitudinal social network modelling in psychology). 
Among these, latent space models (Hoff et al., 2002; Liu et al., 2021; Liu & Zhang, 2021) propose 
that each individual (or actor, more generally) in a network occupies a position in an unobserved, 
low-dimensional social space. The distance between two individuals in this latent space predicts the 
likelihood of a connection in the observed (manifest) network: The probability of a tie decreases 
as the distance between them increases. These spatial positions are interpreted as reflecting social 
standing or similarity to others. The overall configuration of positions provides meaningful insight 
into the network's structure. Therefore, latent space models are effective for uncovering hidden di-
mensions of social similarity or proximity, but they are less focused on modelling explicit structural 
configurations of networks.

Stochastic block models (Anderson et  al.,  1992; Holland et  al.,  1983; Lee & Wilkinson,  2019; 
Sweet, 2015), representing another class of network models, group nodes into latent blocks (i.e., un-
observed subgroups of actors) under the assumption that the probability of a tie depends primarily on 
the block membership. These models capture variation in the propensity of two actors being connected 
based on their respective block memberships. Specifically, stochastic block models assume that the 
probability of a tie differs systematically between within-block and between-block pairs. They are com-
monly used for community detection or identifying clusters in networks, placing less emphasis on mod-
elling local dependence structures. While traditional stochastic block models do not include covariates, 
recent extensions have incorporated covariate information into the modelling framework to enhance 
their interpretability and flexibility (e.g., Sweet, 2015).
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       |  3A TUTORIAL ON BMA FOR ERGMS

In this tutorial, we focus on exponential random graph models (ERGMs; Cranmer et  al.,  2020; 
Lusher et al., 2013; Robins et al., 2007; Snijders et al., 2006; Wasserman & Pattison, 1996), a widely used 
class of statistical models for network data. Compared to latent space models or stochastic block models, 
ERGMs are suited to model local structural configurations and the probabilistic processes underlying 
network formation. Specifically, ERGMs provide a statistical framework for estimating the likelihood 
of edge formation (i.e., ties representing relationships) between vertices (i.e., nodes representing individ-
uals) in a network. For instance, in adolescent peer networks (e.g., who befriends whom in a classroom), 
student characteristics can be used to formulate hypotheses about which ties are more likely to form, 
with ERGMs providing a method to test these theoretical expectations ( Jiao et al., 2017). While ERGMs 
have long been widely used in empirical sociological research, they are increasingly applied to empirical 
social network data in psychology as well (see, e.g., Flakus et al., 2021; Holler & Schüßler, 2024; Jiao 
et al., 2017; Kwiatkowska & Rogoza, 2019; Schüßler et al., 2025; Tejada-Gallardo et al., 2023).

Importantly, ERGMs account for both endogenous dependencies—including network structures 
such as edges, triadic closure, and degree distributions—and exogenous covariates, such as individual 
node-level attributes like gender or ethnicity. Here, the ‘edges’ term models the overall network density 
by capturing the presence or absence of ties between pairs of nodes; the terms capturing triadic closure 
reflect the network's tendency toward transitivity by modelling the likelihood that a given set of three 
nodes forms a closed triangle; and degree-related terms represent the number of connections each node 
has, reflecting popularity or activity patterns within the network. By incorporating both endogenous 
and exogenous effects, ERGMs enable researchers to model and test multiple theoretical predictions 
about the underlying generative mechanisms driving social network formation (Cranmer et al., 2020; 
Light & Moody, 2020).

An essential step in fitting any ERGM in an applied research setting is to select variables based 
on theoretical considerations that explain the formation of ties in the network, similar to the variable 
selection process in linear regression analysis. However, unlike standard regression models, specifying 
ERGMs requires accounting for both the structural properties of the network and the attributes of 
individuals within it, making model specification more complex. A subtle yet crucial aspect of model 
specification is determining which terms (i.e., factors hypothesized to drive network formation) should 
be included. As we shall elaborate, this aspect is often underappreciated but carries substantial method-
ological implications. In the following sections, we first discuss the challenges associated with ERGM 
(mis)specification and model uncertainty, followed by an introduction to Bayesian model averaging as 
an alternative modelling approach.

1.3  |  Challenges of ERGM (mis)specification and model uncertainty

Valid inference using ERGMs rests on a crucial assumption: The model is correctly specified and con-
tains no omitted variables (Bull et al., 1994). Satisfying this assumption requires including all variables 
that predict network formation in the analysis. This ensures that, for any two networks with the same 
number of nodes and identical values for the specified network statistics (i.e., endogenous and exog-
enous effects), the probability of observing each network is equal (Cranmer et al., 2020). Differences in 
probabilities would then indicate the presence of unmodelled effects influencing the network structure. 
Consequently, it is essential to include all theoretically relevant endogenous and exogenous variables in 
ERGMs to control for pertinent factors and draw accurate conclusions about the generative processes 
underlying the observed network structures. Failure to meet this assumption results in model misspeci-
fication, which can distort statistical inference due to omitted variable bias (Bull et al., 1994).

In practice, the assumption that an ERGM is correctly specified with no omitted variables—and 
thus provides valid inference—is often unrealistic. Achieving such a specification is particularly chal-
lenging because accurately capturing the true network-generating process requires the precise and de-
liberate inclusion of effects from both endogenous dependencies and exogenous covariates inherent 
in complex social networks. Depending on theoretical or statistical considerations, a wide range of 
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4  |      HEO et al.

endogenous terms can be incorporated or even constructed in ERGMs. Moreover, endogenous depen-
dencies and exogenous covariates often (are thought to theoretically) interact, further complicating the 
accurate representation of the observed network structure. When the dynamic temporal nature of social 
networks is taken into account (e.g., Leifeld et al., 2018), an additional layer of complexity is introduced, 
making valid inference with ERGMs even more challenging (see, e.g., Koskinen et al., 2015; Krivitsky 
& Goodreau, 2019, for separable temporal ERGMs and longitudinal ERGMs).

The task of accurately capturing the true network-generating process presents two major challenges 
when researchers apply ERGMs to relational data. First, there is a non-negligible possibility that research-
ers will select misspecified ERGMs. While extremely misspecified models are degenerative—making 
parameters inestimable because the estimation equations are only satisfied under (almost) complete 
or (very) sparse graphs (Cranmer et al., 2020; Lusher et al., 2013; Snijders et al., 2006)—more subtle 
degrees of model misspecification can be hard to detect. As such, single-model selection can compro-
mise valid statistical inference while remaining unnoticed by researchers. Second, most applied ERGM 
studies rely on a single ERGM specification chosen based on theoretical considerations. Methodological 
issues stemming from single-model inference have been widely discussed (Hinne et al., 2020; Hoeting 
et al., 1999; Montgomery & Nyhan, 2010). In short, proceeding with statistical analyses using a single 
ERGM ignores the uncertainty inherent in model selection. In other words, researchers relying on a 
single model overlook the possibility that alternative ERGM specifications may better capture the gen-
erative processes underlying network formation.

We note that model uncertainty can arise at various decision points in the ERGM specification 
process. First, even under the assumption of a single true network-generating process, identifying the 
terms that best represent this process is a nontrivial task that requires careful theoretical and empirical 
justification. Second, when the research objective involves comparing multiple competing network-
generating processes, the main challenge lies in correctly specifying these alternatives and accounting for 
the uncertainty surrounding them in order to identify the most plausible generative mechanism. Third, 
regardless of whether a single or multiple true network-generating processes exist and are correctly 
specified, determining which control variables to include, how to specify them, and how to quantify 
the uncertainty associated with these choices remains crucial. Given the breadth of model specification 
choices faced by applied researchers, concerns about single-model ERGM inference become evident in 
many applied settings. These challenges underscore the need for alternative approaches that are robust 
to model misspecification and that explicitly account for model uncertainty. Addressing these concerns 
can improve the reliability of inferences drawn from relational data—an issue that remains largely over-
looked in the extant ERGM literature on psychological applications.

1.4  |  Bayesian model averaging: An alternative approach

The fit of ERGMs is typically evaluated using goodness-of-fit measures for each hypothetical model 
fitted to the data (Hunter et al., 2008). The purpose of assessing goodness-of-fit is to determine whether 
the observed network deviates from the distribution of network statistics—particularly those not ex-
plicitly modeled (e.g., degree distribution, geodesic distances, shared partner distributions, and other 
structural properties)—derived from simulated networks implied by the model. If the goodness-of-fit 
assessment is unsatisfactory, researchers may iteratively add or remove parameters to improve model 
fit. However, this process can be time-consuming and may lead to overfitting, producing a model that 
reflects sample-specific noise rather than generalizable structure. In particular, as researchers iteratively 
modify the model based on observed goodness-of-fit statistics, they may inadvertently tune the model 
to idiosyncratic aspects of the dataset. This phenomenon is known as capitalization on chance and oc-
curs when the iterative evaluation process exploits random variation in the data, resulting in a model 
that fits the sample well but may not generalize beyond it. In addition, this approach overlooks the 
possibility that alternative model specifications may offer equally or more plausible explanations for the 
observed social network.
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       |  5A TUTORIAL ON BMA FOR ERGMS

To address the outlined methodological issues with single model inference for ERGMs—namely, 
violations of correct model specification and the ignoring of model uncertainty—we point to Bayesian 
model averaging (BMA) as a promising alternative (Hinne et al., 2020; Hoeting et al., 1999; Raftery 
et al., 1997). BMA is a multi-model inferential method (van den Bergh et al., 2021) that explains or 
predicts a phenomenon by averaging parameter estimates across a set of candidate models, weighted 
by their posterior model probabilities. By averaging over this model space, BMA naturally incorporates 
model selection uncertainty into the inference process, reducing the risk of selecting a single misspec-
ified model. Furthermore, the advantages of Bayesian statistics (e.g., van de Schoot et al., 2021) enable 
researchers to account for uncertainty in parameter estimation. To implement BMA in the context of 
ERGMs, researchers can specify multiple models with different endogenous dependencies or exogenous 
covariates and average over them to obtain model-averaged parameter estimates. As Hinne et al. (2020) 
highlighted, this approach can reduce overconfidence in model selection, acknowledge the associated 
uncertainty, and provide robust estimates even in the presence of model misspecification.

1.5  |  Bridging the gap: Applying BMA to ERGMs in psychological research

The benefits of BMA for modelling ERGMs are clear and compelling. While the potential for BMA 
in ERGMs has been acknowledged in Caimo and Friel (2011), its application in psychological research 
remains limited. We believe that one main reason for this underutilization is the lack of methodological 
guidelines and practical demonstrations on how to apply BMA in psychology, which hinders its adop-
tion among applied researchers.

To bridge this gap and further engage the psychological research community in using BMA to en-
hance the validity of ERGM inference, this tutorial has two objectives: (1) to outline the methodological 
foundations of BMA for ERGMs and (2) to demonstrate its application through the analysis of empir-
ical social network data. In our empirical demonstration, we provide annotated R code and discuss key 
theoretical and practical considerations that mirror the types of decisions applied researchers typically 
face. By bridging the methodological foundations of BMA with its application in psychological research, 
this tutorial provides a step-by-step guide to promote the benefits of BMA in ERGMs for psychological 
researchers.

1.6  |  Structure of this tutorial

We organize the remainder of this tutorial as follows. First, we introduce Bayesian inference for 
ERGMs, covering the basic model definition, Bayesian parameter estimation, and Bayesian model se-
lection techniques. Next, we outline the theoretical background of BMA, including Bayesian model-
averaged parameter estimates and the inclusion Bayes factor. We then address practical considerations 
for implementing BMA in ERGMs, namely, the selection of candidate models and the specification of 
prior model probabilities. Following this, we present an empirical analysis using real social network data 
to demonstrate the real-world applicability of BMA in ERGMs. Our analysis also examines the sensi-
tivity of results to different prior model probabilities. Finally, we summarize key findings and provide 
directions for future methodological research.

2  |  BAY ESI A N EXPONENTI A L R A NDOM GR A PH 
MODEL LING

In the analysis of relational data, researchers often seek to explain the formation of complex patterns of 
interaction among individuals within a given social context. These interactions are typically understood 
to arise from both the characteristics of the actors themselves (i.e., exogenous factors) and the structure of 
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6  |      HEO et al.

relationships between them (i.e., endogenous factors). For example, researchers might investigate whether 
individuals A and B are more likely to become friends if they share a common characteristic, such as gen-
der. Alternatively, they may examine whether A is more likely to reciprocate a friendship initiated by B, or 
whether individuals A and B are more likely to become friends due to the connection to a mutual friend, C.

The ERGM is a useful analytical tool for examining and predicting the probabilistic formation of 
edges in a network while incorporating covariates from both endogenous and exogenous sources. For 
more detailed discussions on the model definition of the ERGM, readers are encouraged to consult 
Lusher et al. (2013), Cranmer et al. (2020), and Robins et al. (2007). Here, we provide a brief definition 
of the model, which is central to understanding the application of BMA to ERGMs.

2.1  |  The exponential random graph model

A random network Y  comprises a set of n nodes and n × n dyads. The network is often represented as an ad-
jacency matrix, where the entry in the i ′th row and j ′th column, denoted as {Y

ij
: i = 1,…, n; j = 1,…, n} , 

represents the relation between nodes (or vertices) i and j . In a network of binary relationships, Y
ij
= 1 

if there is a link from node i to node j , and 0 otherwise. The diagonal elements Y
ii
 are set to 0 because 

nodes are typically assumed not to form edges with themselves (e.g., in the case of friendship). For 
undirected relations, where the connection has no direction, Y

ij
= Y

ji
, making the adjacency matrix Y  

symmetric.
ERGMs model the probability distribution of Y  as follows: 

where y  is a realization of the random network Y , s(y ) is a known vector of network statistics computed 
on the network—such as centrality measures (i.e., indicators of node importance, such as how many ties 
a node has) and the number of triangles (i.e., closed triplets of nodes where each node is connected to the 
other two)—�(�) is the normalizing constant, and � is a vector of model parameters that describe the 
dependence of p(y |�) on s(y ).

The parameter estimation of ERGMs is analytically challenging due to the intractability of the nor-
malizing constant �(�) and the issue of model degeneracy (Handcock et al., 2003; Rinaldo et al., 2009; 
Snijders et al., 2006). Specifically, evaluating the normalizing constant for all but trivially small net-
works complicates the handling of ERGMs. Model degeneracy is another common issue in ERGMs. 
It refers to a situation in which the probability distribution specified by an ERGM is concentrated on 
a small number of graph topologies, such as empty or complete graphs (Handcock et al., 2003; Lusher 
et  al.,  2013; Rinaldo et  al.,  2009; Snijders et  al.,  2006). Graph topologies refer to distinct structural 
configurations of a network, characterized by patterns of node connectivity, including which nodes are 
connected, the density and arrangement of ties, and structural features such as clusters or hubs. Model 
degeneracy can lead to poor model fit and often renders the estimation process unstable or infeasible 
because the probability distribution assigns near-zero probability to most other possible networks in the 
sample space. Classic model degeneracy, often caused by factors such as transitive closure, arises from 
the specification chosen by researchers. This sensitivity to model misspecification is a critical challenge 
in ERGMs: When degeneracy occurs, the estimation process fails, as no update to a network can be 
made, rendering the model inestimable.

Classical estimators for finding parameter solutions of ERGMs include maximum pseudo-likelihood 
estimation (Besag,  1974; Strauss & Ikeda,  1990) and Monte Carlo maximum likelihood estimation 
(Geyer & Thompson, 1992). However, Caimo et al. (2022) demonstrated that these classical methods 
produce poor estimates when ERGMs are near-degenerate. In particular, pseudo-likelihood estimators 
have been shown to be biased (van Duijn et al., 2009).

(1)p(Y = y ��) =
exp{�T ⋅ s(y )}

𝒵(�)
=

exp{�T ⋅ s(y )}
∑

y∈Y exp{�
T
⋅ s(y )}

,
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       |  7A TUTORIAL ON BMA FOR ERGMS

Compared to classical methods, the Bayesian estimation framework offers the advantage of circum-
venting the need to calculate the intractable normalizing constant. Specifically, Bayesian estimation based 
on the exchange algorithm has demonstrated good performance by producing simulated networks from 
the posterior distribution whose topologies closely match the observed data (see Caimo et al., 2022). We 
explain the mechanics of the exchange algorithm in more detail in the subsection on Bayesian ERGM 
parameter estimation. In addition, the Bayesian method presented by Caimo et al. (2022) has shown that 
the Markov chain converges to the posterior even when the parameters are initially set in a degenerate 
region. In the following subsections, we describe the Bayesian framework for ERGMs with respect to 
parameter estimation and model selection (Caimo et al., 2022; Caimo & Friel, 2011).

2.2  |  Bayesian ERGM parameter estimation

A key tenet of Bayesian inference is the incorporation of a prior distribution with the likelihood of the 
data to obtain the posterior distribution of the parameter of interest based on Bayes' theorem: 

The Bayesian paradigm combines prior knowledge about the parameters of interest (i.e., the prior 
distribution, p(�)) with information obtained from the data (i.e., the likelihood, p(y |�)) to produce 
updated knowledge in the form of the posterior distribution, p(�|y )). The term p(y ) in the denom-
inator is the marginal likelihood, which serves as the normalizing constant to ensure that the pos-
terior density is proper. As a result, the posterior distribution is proportional to the product of the 
likelihood and the prior distribution.

The analytic derivation of the posterior distribution is computationally challenging, and this intrac-
tability is further complicated in the Bayesian estimation of ERGMs due to the normalizing constant 
in Equation (1) and the marginal likelihood in Equation (2). To address this intractable computational 
challenge, Caimo et  al.  (2022) proposed the exchange algorithm to sample from the following aug-
mented distribution: 

The idea of the exchange algorithm is to sample parameter values from an augmented distribution 
p(�′, y ′

,�|y ), where h(�′|�) is a proposal distribution, commonly specified as a multivariate normal distri-
bution (e.g., Koskinen et al., 2010) for the augmented variable �, and p(y ′|�′) refers to the likelihood that 
the simulated y ′ are defined and have the same exponential family of densities as p(y |�).

The exchange algorithm resembles the Metropolis–Hastings algorithm but is adapted for the doubly 
intractable settings of Bayesian ERGMs, due to the intractability of direct sampling from the posterior 
distribution and the presence of an intractable normalizing constant in the likelihood. Steps of the ex-
change algorithm to obtain samples from the marginal distribution for � in Equation (3) are described 
as follows (for a full illustration, see Caimo et al., 2022):

1.	 Update (�′, y ′
) by drawing:

	 (i)	�′ from h( ⋅ |�), and
	 (ii)	y ′ from p( ⋅ |�′).
2.	 Propose to move from � to �′ with acceptance probability �: 

(2)p(�|y ) =
p(y |�)p(�)
p(y )

∝ p(y |�)p(�).

(3)p(��, y �
,�|y ) ∝ p(y |�)p(�)h(��|�)p(y �|��).

� = min

(
1,

exp{�⊤s(y �
)}p(��)h(�|��) exp{��⊤s(y )}

exp{�⊤s(y )}p(�)h(��|�) exp{��⊤s(y �
)}

×
�(�)�(��)

�(�)�(��)

)
,
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8  |      HEO et al.

where the intractable normalizing constants �(�) and �(�′) cancel out. In the exchange step, the observed 

data y  are evaluated under the proposed parameter �′, while the simulated data y ′ are evaluated under the 

current parameter �. The compatibility of � with y ′ is assessed through the ratio exp{�
⊤
s(y �

)}

exp{�⊤s(y )}
, and similarly, 

the compatibility of �′ with y  is evaluated using exp{�
�⊤
s(y )}

exp{��⊤s(y �
)}

. Supposing the proposal distribution h( ⋅ ) is 

symmetric, the acceptance probability � simplifies to: 

3.	 Accept the exchange move if y ′ closely approximates y  in terms of the summary statistics, which 
are sufficient statistics and thus preserve the information needed to approximate the true posterior 
density.

To illustrate these steps more intuitively, the exchange algorithm draws y ′ from the distribution 
p(y ′|�′) using a Markov chain Monte Carlo (MCMC) simulation, since direct sampling is not possi-
ble due to the intractable normalizing constant in the ERGM likelihood (Caimo et al., 2022). At each 
MCMC iteration, a network is simulated given a sample parameter value, using an MCMC algorithm. 
During this iterative process, the probability of the proposed graph is compared to that of the observed 
network, and the algorithm decides whether to accept or reject the proposed network. After this step, a 
change is made to the proposed network, for instance, by creating a new edge or dropping an existing 
edge. In this tutorial, we use the R package Bergm (Caimo & Friel, 2013, 2014), which offers function-
ality for approximating the posterior distribution via the exchange algorithm. The package improves 
the mixing of the MCMC algorithm by implementing a parallel adaptive direction sampler (Roberts & 
Gilks, 1994).

An important feature of Bayesian inference is the ability to incorporate prior distributions to model 
uncertainty about parameters (i.e., uncertainty in their values). In Bergm, prior distributions can be 
specified for the coefficients of endogenous and exogenous effects using the mean vector and variance-
covariance matrix of a multivariate normal distribution. The mean vector determines the prior location 
(i.e., the expected value before seeing data), while the covariance matrix determines the prior spread. In 
this way, researchers can control the degree of prior informativeness and incorporate domain knowl-
edge: Tighter variances reflect stronger prior certainty, while larger variances reflect weaker, more dif-
fuse prior beliefs (for details and examples, see Caimo & Friel, 2013, 2014). Let �

D
 be a D-dimensional 

vector of the coefficients of endogenous and exogenous terms. The prior distribution for these ERGM 
parameters can be specified in the following way: 

where the default prior specification for �
D

 is the multivariate normal distribution with the D-dimensional 
mean vector of 0 and the diagonal variance–covariance matrix with elements of 102. In practice, diagonal 
elements of the �

D
 matrix are specified to be weakly informative (Gelman et al., 2008), a choice that has 

been shown to be necessary when ERGMs are complex or contain missing values (Krause et al., 2020). 
Accordingly, we account for these practical considerations by employing weakly informative prior settings, 
as will be detailed in the ‘Empirical Analysis of a College Friendship Network’ section.

Finally, the convergence and mixing of the MCMC chains used to approximate the posterior 
distribution can be assessed using standard diagnostic tools (Caimo et  al.,  2022). In Bergm, the 
MCMC diagnostics include the marginalized density plot, the trace plot, and the autocorrelation 
plot (Caimo & Friel, 2013, 2014). Researchers can then summarize the results using the posterior 
mean, posterior standard deviation, native standard error, time-series standard error, and Bayesian 
p-values.

� = min

(
1,

exp{�⊤s(y �
)}p(��) exp{��⊤s(y )}

exp{�⊤s(y )}p(�) exp{��⊤s(y �
)}

)
.

(4)�
D
∼ℳ𝒱𝒩(�

D
,�
D
),
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       |  9A TUTORIAL ON BMA FOR ERGMS

2.3  |  Bayesian ERGM model selection

The posterior distribution in Equation (2) provides information about the parameters of interest while 
accounting for parameter uncertainties. To compare several candidate models, however, Bayes’ theorem 
needs to be extended to the model level to obtain the posterior model probability: 

In Equation (5), the posterior model probability, p(ℳ
h
|y ), represents the relative probability assigned to 

model ℳ
h
 after observing the data, while the prior model probability, p(ℳ

h
), represents the relative proba-

bility assigned to the model before any data were observed. Here, the subscript h indexes an arbitrary ERGM 
in the candidate model set. The posterior model probability of a given model is computed by dividing the 
product of its marginal likelihood p(y |ℳ

h
) and its prior model probability by the sum of such products 

across all models in the candidate set. As such, the posterior model probability reflects the relative support 
for that model, balancing how well it explains the observed data (via the marginal likelihood, which serves 
as the model evidence, as explained below) and how plausible it was considered a priori, relative to all other 
models under consideration.

Another important term is the marginal likelihood, p(y |ℳ
h
), which serves as an indicator of predic-

tive performance or model evidence in the context of Bayesian model comparison.1 The marginal like-
lihood is computed as follows: 

In Bergm, the marginal likelihood can be obtained using either the Chib and Jeliazkov method (CJ; 
Bouranis et al., 2018; Chib & Jeliazkov, 2001) or the power posterior method (Friel et al., 2014; Friel & 
Pettitt, 2008).

The CJ method (Bouranis et al., 2018; Chib & Jeliazkov, 2001) estimates the marginal likelihood 
by evaluating the likelihood, prior, and posterior at a chosen parameter value, typically one with high 
posterior density to improve numerical accuracy. This approach uses output from the Metropolis–
Hastings algorithm, where the parameter vector is updated in full conditional blocks. The core idea is 
to break down the posterior distribution into a sequence of conditional distributions, each of which can 
be estimated using the MCMC samples. By combining these estimates, the method provides a practical 
way to compute the marginal likelihood without needing to know the full normalizing constant of the 
posterior. On the other hand, the power posterior method (Friel et al., 2014; Friel & Pettitt, 2008) esti-
mates the marginal likelihood by constructing a transition from the prior to the posterior distribution. 
This is achieved by raising the likelihood to a fractional power, referred to as the inverse temperature. 
When the inverse temperature is zero, the distribution corresponds to the prior, and when it is one, it 
corresponds to the posterior. In between, the likelihood is gradually introduced into the distribution, 
tempering its influence. The marginal likelihood is then approximated by integrating the expected de-
viance for each model across this continuum of tempered distributions. In practice, the range of inverse 
temperatures is discretized, and numerical integration, such as the trapezoidal rule, is used to estimate 
the marginal likelihood.

If we take the posterior model probabilities of two models and divide one by the other, the poste-
rior odds (i.e., the relative plausibility of one model compared to the other after observing data) are 
expressed as the product of the ratio of their marginal likelihoods and the prior model odds (i.e., the 
relative plausibility of one model compared to the other model before observing data): 

(5)p(ℳ
h
�y ) =

p(y �ℳ
h
)× p(ℳ

h
)

∑
K

k=1

�
p(y �ℳ

k
)× p(ℳ

k
)

� .

 1Compared to the marginal likelihood notation used for Bayesian parameter estimation in Equation (2), the conditional notation here specifies 
the marginal likelihood given a specific model of interest.

(6)p(y |ℳ
h
) = ∫ p(y |�,ℳ

h
)× p(�|ℳ

h
)d�.
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10  |      HEO et al.

The first term on the right side of Equation (7) is the Bayes factor (Kass & Raftery, 1995), which quantifies 
each model's evidence based on the observed data. More specifically, the Bayes factor evaluates the likeli-
hood of the data being observed under two competing models. When the prior model odds are equal to 
each other (i.e., p(ℳ

1
) = p(ℳ

2
)), the Bayes factor is simply the posterior model odds.

3  |  BAY ESI A N MODEL AV ER AGING FOR ERGMS

We have outlined the basic model definition of the ERGM and explained how Bayesian inference in-
corporates prior information for estimating parameters (Equation (2)) and selecting models (Equation 
(7)). Let us now consider a scenario in which researchers aim to simultaneously account for uncertainty 
in their ERGM parameters of interest and the multiple models under consideration. In this case, re-
searchers can average parameter estimates across candidate models based on their posterior model 
probabilities using the BMA paradigm (Hoeting et al., 1999; Raftery et al., 1997). The conceptual details 
and philosophical foundations of BMA are thoroughly discussed in works such as Hoeting et al. (1999), 
Raftery et al. (1997), Hinne et al. (2020), Montgomery and Nyhan (2010), and van den Bergh et al. (2021). 
This section provides a summary of the theoretical background of BMA, its application to exponential 
random graph modelling, and the practical considerations researchers face in its implementation.

3.1  |  Theoretical background

BMA can be used to estimate parameters or predict future observations by averaging over multiple can-
didate models. To distinguish the parameters being averaged across models from the full set of model-
specific parameters �, we use � to represent the collection of model-averaged parameters in BMA. For 
estimation purposes, � is obtained as follows: 

meaning the model-averaged distribution of � is obtained by first sampling one model from a total of H 
candidate models based on their respective posterior model probabilities, and then drawing one parameter 
value from the posterior distribution of the sampled model. Repeating this procedure results in the model-
averaged distribution. Similar to the posterior distribution of a single model, researchers can summarize 
the model-averaged distribution using summary statistics such as the posterior mean, posterior standard 
deviation, and credible interval.

Although ERGMs specify the likelihood using a nonlinear exponential-family form—analogous to 
logistic regression models in that ERGMs model the log-odds of tie formation—BMA remains theoret-
ically valid in this setting. In our approach, we implement formal BMA by averaging the full posterior 
distributions of the parameter vector � across a set of candidate models. The parameter vector � is 
defined over a shared parameter space, and each model is weighted by its posterior model probability, 
as shown in Equation  (8). For models that exclude a particular network statistic, the corresponding 
coefficient is fixed at zero. This procedure results in a marginal model-averaged posterior distribution 
that accounts for model uncertainty. The BMA framework has been well established for other nonlinear 
models, such as generalized linear models (Hoeting et al., 1999; Li & Clyde, 2018). Therefore, despite 
the nonlinear nature of ERGMs, the resulting model-averaged posterior distributions remain valid and 
interpretable for inference.

(7)
p(ℳ

1
|y )

p(ℳ
2
|y )

=
p(y |ℳ

1
)

p(y |ℳ
2
)

×
p(ℳ

1
)

p(ℳ
2
)

.

(8)p(�|y ) =
H∑

h=1

[
p(�|y ,ℳ

h
)× p(ℳ

h
|y )

]
,
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       |  11A TUTORIAL ON BMA FOR ERGMS

For the sake of predicting future observations, � is replaced with ŷ  to obtain the model-averaged 
predictive distribution: 

Here, ŷ  is a prediction of y , and p(ŷ |y ,ℳ
h
) is the posterior predictive distribution. This formulation 

represents the Bayesian model-averaged predictive distribution, in which predictions from individual can-
didate models are integrated according to their posterior model probabilities. Specifically, posterior samples 
of model parameters are drawn for each model ℳ

h
, and predictive draws of ŷ  are subsequently generated 

conditional on those samples. Although we introduce this predictive formulation for completeness, our 
primary focus remains on the estimation aspect of BMA for ERGMs. Readers interested in the predictive 
aspect of BMA may consult Kaplan (2021).

When a number of candidate models are considered, the relevance of including a particular parame-
ter of interest can be quantified by summing the posterior model probabilities of the candidate models 
that include it: 

This is termed the posterior inclusion probability, and it indicates the strength of evidence for including a 
specific parameter, based on the support provided by the data. It is also possible to quantify the evidence for 
excluding a specific parameter by summing the posterior model probabilities of the candidate models that 
exclude it. This is referred to as the posterior exclusion probability: 

Using Equations (10) and (11), researchers can evaluate the plausibility of the observed network 
under ERGMs that include specific parameters compared to those that exclude them. This assess-
ment helps determine whether an endogenous or exogenous predictor should be incorporated into 
the model: 

On the left-hand side of Equation (12) are the posterior inclusion odds, while the first and second 
terms on the right-hand side refer to the inclusion Bayes factor and the prior inclusion odds, respec-
tively. The inclusion Bayes factor represents the update from the prior inclusion odds to the poste-
rior inclusion odds, indicating the support of the data for including a certain predictor compared 
to not including it, regardless of specific model selections. The prior inclusion odds consist of the 
prior inclusion probability in the numerator and the prior exclusion probability in the denominator, 
each calculated by summing the prior model probabilities that either include or exclude a certain 
parameter of interest.

3.2  |  Practical considerations

The practical implementation of BMA for ERGMs requires addressing two considerations: selecting the 
pool of candidate models and assigning prior probabilities to these models.

(9)p(ŷ |y ) =
H∑

h=1

[
p(ŷ |y ,ℳ

h
)× p(ℳ

h
|y )

]
.

(10)p(incl�|y ) =
∑

ℳ
h
:ℳ

h
∋�

p(ℳ
h
|y ).

(11)p(excl�|y ) =
∑

ℳ
h
:ℳ

h
∌�

p(ℳ
h
|y ).

(12)
p(incl�|y )
p(excl�|y )

=
p(y |incl� )
p(y |excl� )

×
p(incl� )

p(excl� )
.
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12  |      HEO et al.

3.2.1  |  How many candidate models?

In principle, all possible candidate models should be considered for BMA (e.g., Hinne et al., 2020; van 
den Bergh et al., 2021). For instance, in previous applications of BMA to psychometric network models 
(Hinne et al., 2020; Sekulovski et al., 2024), all possible network structures, defined by the presence or 
absence of connections between nodes, were evaluated. However, for ERGMs, pooling the full set of 
candidate models is neither straightforward nor realistic. This is because there is an effectively unlimited 
number of endogenous terms that can be included, and even when working with a relatively small set 
of nodal attributes, researchers can specify different effects to represent them, resulting in a vast model 
space. We therefore emphasize that theoretical considerations should take precedence over mere enu-
meration when identifying the pool of candidate models. That is, researchers should define the space 
of candidate models based on parameter configurations that are relevant to their theoretical interests, 
while excluding those that are not. Models lacking theoretical justification should be excluded before 
using BMA to assess the uncertainty surrounding the inclusion of models that are theoretically relevant 
(see Montgomery & Nyhan, 2010).

As for statistical considerations, it is important to note that Bayesian estimation of ERGMs can be 
halted if some candidate models in the candidate pool are radically misspecified and susceptible to model 
degeneracy (Handcock et al., 2003). In a similar vein, estimation issues may arise due to optimization 
challenges or collinearity, as reported in cases involving multiple endogenous terms (Duxbury, 2021; 
Lusher et al., 2013). These models should be carefully inspected by researchers to determine whether 
they are theoretically relevant; otherwise, they should be excluded from the analysis. Additionally, 
ERGMs cannot be fitted as empty models, so candidate models should at least include two terms, one 
of which is typically the ‘edges’ term for network density.

Considering these points, if a researcher selects p endogenous and/or exogenous terms to test hy-
potheses based on theory, the total number of candidate models in a pool would be 2p. However, if 
this pool includes an empty model, a model containing only a density term, or candidate models with 
parameter configurations that do not accurately represent the theoretical model of interest, such models 
should be excluded. The final pool must include a sufficient number of models that reflect theoretical 
considerations, covering all plausible specifications while maintaining theoretical rigor and computa-
tional efficiency.

3.2.2  |  How to decide prior model probabilities?

Assigning prior probabilities to each candidate model is another key consideration in BMA. As Hinne 
et al. (2020) noted, the results of BMA can depend on the choice of the prior model probabilities, mak-
ing careful assignment crucial. In the absence of prior knowledge regarding the plausibility of the can-
didate models before observing data, it is typically assumed that all candidate models are equally likely a 
priori. This approach, often referred to as assigning a ‘uniform prior’ over the model space, ensures that 
each model is given equal probability. For instance, assuming there are H (e.g., 10) candidate models, 
each is assigned an equal probability of 1

H

 (e.g., 1
10

). This neutral choice of assigning equal probabilities 
due to limited prior knowledge is described by Hoeting et al. (1999).

If some candidate models are more plausible a priori, these models should receive more weight than 
others. To illustrate, consider the use of multiple ERGMs to model a directed friendship network. If 
theoretical considerations or empirical evidence from previous studies support models with reciprocity 
terms, candidate models that include reciprocity terms should receive higher prior probabilities, while 
those without them should receive lower probabilities. The degree to which each weight is adjusted de-
pends on the researchers' decisions. In such cases, it is advisable to test different prior model probability 
settings and examine the sensitivity of the results. The prior model probabilities over the candidate 
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       |  13A TUTORIAL ON BMA FOR ERGMS

models must sum to 1. Given this requirement, researchers can allocate differing degrees of prior belief 
based on expert knowledge, findings from previous empirical studies, or substantive theory.

4  |  EMPIR ICA L A NA LYSIS OF A COL L EGE FR IENDSHIP 
NET WOR K

Having outlined the theoretical and practical considerations of using BMA for ERGMs, we now dem-
onstrate its application through an analysis of an empirical friendship network in a college setting. The 
data were collected in 2017 by the Lab for Big Data Methodology at the University of Notre Dame and 
consist of friendship ties among fourth-year college students, along with nodal-level characteristics in-
cluding demographic, behavioural, and psychological variables. This dataset has previously been used in 
other forms of social network models, such as latent space models (Liu et al., 2021; Liu & Zhang, 2021), 
and is particularly relevant to psychological research due to its inclusion of psychological trait measures. 
For clarity of presentation, interpretation, and visualization, we focus on a subsample of 90 students 
from the full dataset in the present analysis. This subsample was selected because it exhibited the clear-
est class-based clustering pattern, making it informative for illustrating the application of social network 
modelling and BMA for ERGMs. The data and R code used to produce the results are available on the 
Open Science Framework (OSF) at https://​osf.​io/​g9eq4/​​.

4.1  |  Research scenario

As emphasized in the ‘Practical Considerations’ subsection, theoretically grounded models should be 
prioritized over those solely selected for computational feasibility. In this section, we present a hypo-
thetical research scenario to illustrate the application of our approach. Specifically, we consider a case in 
which a researcher aims to explain and predict the structure of college friendships based on substantive 
theory and findings from previous empirical studies.

First, the researcher incorporates a structural effect to capture the tendency for triadic closure in 
the college friendship network—a common feature of social networks in which actors connected to a 
mutual third party are more likely to form ties with each other. In the context of the hypothetical sce-
nario, this tendency is interpreted through the lens of balance theory (e.g., Cai et al., 2024; Heider, 1958; 
Pircalabelu & Claeskens, 2016), which postulates that social actors strive for cognitive consistency in 
their relational structures. Specifically, when students A and B, and B and C , are connected, the like-
lihood of a tie forming between A and C  increases. The absence of such a tie produces cognitive 
dissonance, an uncomfortable psychological state that actors are motivated to resolve by forming a 
new connection, thereby forming and completing a balanced triad. To formalize this mechanism in 
the ERGM, the researcher includes the geometrically weighted edgewise shared partner (GWESP; see 
Hunter, 2007; Snijders et al., 2006) term.

The GWESP term is a widely used specification for modelling triadic closure. It captures the ten-
dency for a tie to become more likely between two actors as they share more mutual partners, reflecting 
the principle that ‘friends of friends’ are more likely to become connected. Compared to other standard 
triad count terms, the GWESP term is often preferred because it mitigates issues such as model over-
saturation and instability. This is achieved through a decay parameter that reduces the influence of 
ties involving a very large number of shared partners. As a result, the contribution of each additional 
shared partner decreases progressively, preventing triangle counts from escalating uncontrollably and 
improving model stability. For further details, we refer readers to Cranmer et al. (2020), Hunter (2007), 
and Snijders et al. (2006).
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14  |      HEO et al.

In addition to the endogenous variables, the researcher considers the role of three exogenous covari-
ates in tie formation within the friendship network: two personality traits from the Big Five—extra-
version and openness to experience—and a behavioural indicator of smoking status (i.e., whether the 
student smokes or not).

Starting with the two personality traits, the researcher includes ‘extraversion’ and ‘openness’ as 
exogenous covariates guided by social psychological theory and prior empirical research. Extraverted 
individuals are generally more social, talkative, assertive, and active than those with lower extra-
version (Roccas et al., 2002). Accordingly, extraverted college students are hypothesized to initiate 
more interactions, increasing their likelihood of forming friendship ties within the network (Rubin 
et al., 2006; Selfhout et al., 2010; Wagner et al., 2014). Similarly, college students high in openness 
to experience tend to be more intellectual, imaginative, sensitive, and open-minded than those low 
in openness (Roccas et al., 2002). These qualities may facilitate engagement with diverse peers and 
encourage exploration of unfamiliar social contexts, thereby fostering a broader set of connec-
tions (Wagner et al., 2014). Both personality effects are modeled using ‘nodecov’ terms, which test 
whether individuals with higher values on these traits are more likely to be involved in a greater 
number of friendship ties.

The third exogenous covariate, smoking, reflects a visible behavioural marker that is theorized to 
function as a signal of social status within college peer culture. The researcher includes this effect based 
on sociological theories of peer status hierarchies and prior empirical research. Individuals who smoke 
are often perceived as more rebellious, autonomous, or socially confident, which may enhance their 
social status (in terms of popularity) within peer networks (Lakon et al., 2015). Although the relation-
ship between smoking and status is likely reciprocal, several studies suggest that smoking can function 
as a status signal, enhancing individuals' appeal for friendship selection within peer groups (Lakon 
et al., 2015; Schaefer et al., 2012). Accordingly, smokers may attract more friendship ties because they 
occupy a high-status position within the group. This status-related mechanism is modeled using a ‘no-
decov’ term, which captures whether individuals who smoke are more likely to be involved in a greater 
number of friendship ties.

Importantly, the researcher remains uncertain about the theoretical importance of each exogenous 
effect for understanding the true network-generating process. To address this uncertainty, the researcher 
evaluates model uncertainty associated with including these three exogenous covariates—extraversion, 
openness, and smoking—within the ERGM framework for modelling friendship formation. Models 
that exclude all three covariates are not considered, as the focus is on assessing the relative contribution 
of each covariate rather than their collective absence.

Lastly, the researcher includes gender and whether the students attended the same college class as 
control variables in the ERGM. These effects are specified using the ‘nodematch’ term, as an oper-
ationalization of the homophily principle, that is, as a stable individual psychological preference for 
forming friendships with others who are similar to oneself (Kossinets & Watts, 2009; McPherson 
et al., 2001). This preference is theorized to stem from a motivation to reduce subjective uncertainty 
in social interactions (Hogg, 2000). Similarity in attributes, values, and experiences enhances in-
terpersonal predictability, facilitates smoother communication, and fosters mutual understanding 
(Festinger, 1957). Gender-based homophily in friendship networks has been shown to be particu-
larly robust, with same-gender friendships being more common than would be expected at random 
(McPherson et al., 2001). Likewise, class-based homophily reflects the tendency for students who 
attended the same class to form friendship ties, as increased opportunities for interaction often lead 
to greater familiarity and connection. Specifically, this expectation derives from Feld's theory on 
the focused organization of social ties (Feld, 1981), which emphasizes that social foci like college 
classrooms structure interaction and foster relationship formation. Including these controls through 
‘nodematch’ terms allows the model to account for background-driven, similarity-based friendship 
formation mechanisms that might otherwise confound the interpretation of the theoretical focal 
endogenous and exogenous effects.
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       |  15A TUTORIAL ON BMA FOR ERGMS

This hypothetical research scenario reflects a typical ERGM specification process in psychological 
research. The researcher selects theoretically relevant endogenous, exogenous, and control variables, 
represents them using appropriate model terms to capture the underlying network-generating process, 
and evaluates these models using BMA for ERGMs to address potential model misspecification and 
model uncertainty.

4.2  |  Data description

Having formulated the theoretical expectations, the researcher begins by examining the descriptive 
statistics of the data, concentrating first on the network characteristics and then on the nodal attributes. 
The college friendship network is modeled as an undirected graph, where nodes represent individual 
students and edges denote mutual friendship ties. In the original dataset, friendship ties are valued on 
a scale from 0 to 5. The specific meaning of each level on the friendship scale is provided in Table 1. 
For the purpose of ERGM analysis, these valued ties were dichotomized into a binary format: Ties 
with values of 3 (‘The person is a friend of mine.’) or 4 (‘The person is one of my best friends.’) were 
recoded as 1, indicating the presence of a friendship, while ties with values of 0, 1 or 2 (ranging from 0 
= ‘I have never heard the name’ to 2 = ‘I have met the person a few times, but he/she is not a friend of 
mine’,) were retained as 0. This binarization thus assumes that all retained ties reflect equally significant 
friendship. The following syntax demonstrates how the necessary packages and data were loaded for 
the analysis.
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16  |      HEO et al.

4.2.1  |  Network characteristics

The first step to understanding the structure of the college friendship network is to examine its network 
characteristics. This is done using the following syntax:

The college friendship network consists of 90 nodes (i.e., college students) and 1160 edges (i.e., friendships), with 
no missing ties. The network density, defined as the proportion of realized edges to the total number of potential 
edges, is approximately .290, indicating a moderately connected network. Degree centrality, which quantifies the 
number of direct connections a node has, is particularly relevant for identifying influential individuals within the 
network. Students with high degree centrality may serve as social hubs, playing important roles in fostering com-
munication, maintaining group cohesion, and facilitating the flow of information within the network. Visual 
representations of the network and degree centrality are provided in Figures 1 and 2.

T A B L E  1   Five-point scale for coding relationships in the college friendship network.

Level Interpretation

0 I have never heard the name

1 I heard about the person but had no personal interaction with her/him

2 I have met the person a few times, but he/she is not a friend of mine

3 The person is a friend of mine

4 The person is one of my best friends
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       |  17A TUTORIAL ON BMA FOR ERGMS

Figure  1 presents a raincloud plot of degree centrality by college class membership. Each distri-
bution combines a raw data jitter plot to represent individual students, a density estimate to show the 
distribution of degree centrality values, and a boxplot to indicate variability, altogether allowing for 
both individual-level and group-level inspection of connectivity. Students in Class A (bottom; colored 
light blue) generally have higher degree centrality based on the median (i.e., the second quartile of the 
boxplot). Students in Class B (middle; orange) have a lower median, and students in Class E (top; light 
green) show the lowest median centrality. Students in Classes A and E show similar levels of variability 
(as indicated by the range from minimum to maximum in the boxplot), whereas Class B displays less 
variability in degree centrality. This suggests that in Class B, students are more similar to one another 
in terms of their number of connections, while Classes A and E exhibit a wider range of social connec-
tivity, indicating a more unequal distribution of social ties within those classes. In each class, students 
24, 37, and 85 exhibit the highest degree centrality, indicating that they serve as social hubs within their 
respective classes. At a minimum, all students are connected, as there are no isolates in the network.

Figure 2 visually represents the college friendship network of students. Nodes are colored accord-
ing to class membership, and their sizes are scaled to reflect each student's degree centrality, with 
larger nodes indicating greater connectivity. The visualization reveals noticeable clustering by class, 
particularly among students in Class A (located at the bottom right and colored light blue), Class B (lo-
cated on the left and colored orange), and Class E (located at the upper right and colored light green), 
suggesting that class membership plays an important role in shaping friendship formation. Notably, 
the students with the highest degree centrality in each class—students 24 (Class A), 37 (Class B), and 
85 (Class E )—are also connected to peers outside their own class, indicating their potential role as 
cross-class social hubs. These students are likely to play central roles in facilitating information flow 
and fostering social cohesion within and across class boundaries. In contrast, some students occupy 
more peripheral positions in the network, such as student 22 in Class A, student 54 in Class B, and 

F I G U R E  1   College friendship network of students included in the empirical analysis, visualized by class and degree 
centrality.
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18  |      HEO et al.

student 83 in Class E. These students may be less integrated into the broader social structure of the 
cohort, possibly reflecting either individual preferences or structural barriers to connection.

4.2.2  |  Nodal attributes

The nodal attributes, in turn, provide psychological, behavioural, demographic, and group-based in-
formation about each student in the college friendship network. Specifically, the dataset includes two 
Big Five psychological personality traits—extraversion and openness—smoking status (behaviour), 
gender (demographic), and classroom membership (group-based). There were no missing values in the 
nodal attributes.2 Descriptive statistics for these variables are generated using the following syntax.

 2As should now be clear, there were no missing values in either the tie data or the nodal attribute data. Nonetheless, we acknowledge that 
missing data can pose challenges for researchers. In Bayesian analyses of ERGMs, missing values can be handled through data augmentation, 
whereby missing entries are ‘filled in’ as part of the estimation process (Koskinen et al., 2010). Readers interested in methods for handling 
missing data in ERGMs are referred to Koskinen et al. (2010) and Krause et al. (2020) for further information.

F I G U R E  2   Network visualization of college friendship.
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20  |      HEO et al.

Extraversion
The dataset includes two dimensions of the Big Five personality traits. The first is extraversion, meas-
ured using four items from the 20-item Mini-IPIP Scale for the Big Five personality factors (Donnellan 
et al., 2006). Factor scores for extraversion (variable name: ext) were derived from these items follow-
ing procedures outlined in Liu et al. (2021, 2018). Scores range from −2.381 to 1.269, with a mean of 
−.591. Higher scores indicate greater levels of extraversion.

Openness to experience
The second personality trait is openness to experience, measured using four items related to open-
ness from the same Mini-IPIP Scale (Donnellan et al., 2006). Factor scores for openness (variable 
name: opn) were also derived following the method used in Liu et  al.  (2021, 2018). Openness 
scores ranged from −.926 to .829, with a mean of .016. Higher values correspond to higher levels 
of openness.

Smoking status
A health-related behaviour variable included in the dataset is smoking status of the respondent (variable 
name: smoke). Of the 90 students, 70 reported that they do not smoke (coded as 0), while the remaining 
20 identified as smokers (coded as 1).

Gender
One demographic variable included in the dataset is student gender (variable name: gender). Among 
the 90 students, 39 identified as male (coded as 0) and 51 as female (coded as 1).

Class
The dataset also includes information about each student's classroom in college (variable name: class). 
As such, this variable reflects each student's group affiliation within the college context. Students in 
the same college class participated in many shared activities, which served as a foundation for forming 
friendships. Among the 90 students included in the analysis, 33 were from Class A, 26 from Class B, 
and 31 from Class E.

4.3  |  Analytic details

To estimate the parameters of the candidate ERGMs, we specified endogenous terms, exogenous 
terms, and control variables. When fitting all models in the candidate pool, we followed standard 
ERGM practice by including the ‘edges’ term in every candidate model to represent the network 
density (Cranmer et al., 2020). In the code block, this is implemented via the edges specifica-
tion in the fixed_terms object. In addition, the GWESP term was included as an endogenous 
structural term using gwesp. For this term, we used a decay parameter fixed at .5 to model the 
tendency toward triad closure (Caimo & Friel,  2014; Pircalabelu & Claeskens, 2016). The three 
exogenous nodal covariates (extraversion, openness, and smoking status) were evaluated using 
different configurations across candidate models. These covariates ref lect, respectively, the stu-
dent's level of extraversion, level of openness to experience, and whether they smoke. Each co-
variate was included using the nodecov term: nodecov('ext'), nodecov('opn'), and 
nodecov('smoke'). The two control variables, gender and class membership, were included 
via nodematch('gender') and nodematch('class'). The nodematch term captures 
homophily effects (i.e., the tendency for similar individuals to form ties) by modelling the in-
creased likelihood of tie formation between students who share the same attribute, such as gender 
or class.
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       |  21A TUTORIAL ON BMA FOR ERGMS

Unlike the fixed terms, the covariates varied across models. To enumerate all combinations, these 
nodal covariates were specified as optional_terms in the code. We considered only models that 
included at least one of the three covariates. Models containing only the endogenous terms and control 
variables (i.e., edges, gwesp, gender, and class) were excluded to reflect a scenario in which the 
researcher is specifically interested in the covariate effects. This process resulted in a total of seven can-
didate models (model_formulas).

To formalize the structure of each candidate model, we denote the probabilistic formulation as 
follows: 

where �
h
⊆ {�����, ���, ���} indexes the optional nodal covariates included in model ℳ

h
, with the 

constraint that �
h
≠ ∅. The R code below implements this model specification logic by (1) defining 

the fixed endogenous terms and control variables (edges, gwesp, class, and gender), (2) enumerating 
all possible combinations of the exogenous nodal covariates, and (3) constructing the corresponding 
model formulas.

ℳ
h
: p(Y =y |�

h
)∝ exp {�

h,1
⋅�����(y )+�

h,2
⋅�����(y )

+�
h,3

⋅�����(y )+�
h,4

⋅������(y )+
∑

k∈𝒮
h

�
h,k

⋅�������
k
(y )},
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22  |      HEO et al.

For this set, we assigned equal prior model probabilities (i.e., p(ℳ
1
) = p(ℳ

2
) = … = p(ℳ

7
) = 1

7

), assuming 
no prior preference for any particular model (i.e., a uniform prior).

We used the R Bergm package (Caimo & Friel, 2013, 2014) to fit the models. The main func-
tion used was bergm(). For the MCMC algorithm, the number of chains was set to twice the 
number of parameters being estimated (e.g., 10 chains for a model with 5 parameters), which is the 
default setting in the Bergm package. Each chain included 4000 posterior draws (main.iters 
= 4000), after discarding the first 1000 iterations as burn-in (burn.in = 1000), and used 
2000 auxiliary iterations (aux.iters = 2000) with a default scaling factor of .6 (gamma = 
.6) for the parallel adaptive direction sampler (Caimo & Friel, 2013, 2014). The auxiliary itera-
tions refer to the number of MCMC steps used in the internal likelihood simulation (i.e., the aux-
iliary chain), which is required by the exchange algorithm. Since the ERGM likelihood is doubly 
intractable, this internal MCMC chain is used to simulate a network for each proposed parameter 
value. For further technical details, see Caimo et  al.  (2022); for software implementation, see 
Caimo and Friel (2014).

The prior distribution for model coefficients was specified as a multivariate normal with a zero 
mean vector (M.prior) and a diagonal covariance matrix with elements set to 4 (S.prior), fol-
lowing recommendations for weakly informative priors (Krause et  al.,  2020). The V.proposal 
parameter controls the variance of the multivariate normal proposal distribution h(�′|�) and was set 
to the Bergm package default of .0025. The number of posterior draws was determined by assessing 
convergence and ensuring parameter stability across chain lengths. The R code below fits each can-
didate model using the bergm() function. Parallel processing is used to expedite computation by 
utilizing all but two cores.
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24  |      HEO et al.

To evaluate model evidence for the purpose of model averaging, we computed the marginal 
likelihood separately from the posterior sampling process, as the current implementation of 
the Bergm package does not support simultaneous estimation. To obtain the marginal likeli-
hood, we used the CJ method based on adjusted pseudolikelihood, implemented via the ev-
idenceCJ() function (Bouranis et  al.,  2018; Caimo & Friel,  2013, 2014). This required an 
additional MCMC chain of 4000 iterations (main.iters = 4000), including a burn-in of 
1000 iterations (burn.in = 1000) and 2000 auxiliary iterations (aux.iters = 2000). We 
used 3000 post-burn-in samples from this chain to calculate the log marginal likelihood (num.
samples = 3000). For the V.proposal and ladder arguments, we used values of 1.5 and 
30, respectively, following the default settings. The ladder argument controls the adjustment 
of the ERGM pseudolikelihood (see Bouranis et al., 2018). Prior distributions for the parameters 
were based on the multivariate normal distribution with a mean vector of zeros (M.prior) 
and a diagonal covariance matrix with elements of 4 (S.prior). As demonstrated previously, 
setting 4 as the elements of the diagonal covariance matrix is intended to specify a weakly in-
formative prior that is generally preferred for ERGMs (Krause et al., 2020). The R code below 
computes the log marginal likelihoods for each candidate model using the evidenceCJ() 
function. As in the model fitting stage, parallel processing is used to accelerate computation by 
distributing the tasks across multiple cores.
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       |  25A TUTORIAL ON BMA FOR ERGMS

Using parameter estimates and log marginal likelihood estimates, we compute Bayesian model-
averaged parameter estimates following Equation (8). To illustrate, we simulate from the model-averaged 
posterior distribution p(�|y ) by first sampling a model ℳ

h
 from the candidate set {ℳ

1
,…,ℳ

H
} in 
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26  |      HEO et al.

proportion to its posterior model probability p(ℳ
h
|y ), and then drawing the corresponding parameter 

estimate � from the posterior samples under the selected model: 

This simulation procedure approximates the right-hand side of Equation (8) through repeated resampling 
and is shown in the R code below. Specifically, for a parameter of interest (indexed by param_name), 
the function repeatedly samples one model according to its posterior probability (i.e., post_prob) and 
checks whether the sampled model includes the target parameter (i.e., whether param_name appears in 
the posterior sample matrix's column names). If the parameter is present, the function randomly draws one 
value from its posterior distribution; if it is not included in the sampled model, a value of zero is recorded. 
Repeating this process generates posterior draws from the model-averaged distribution of the parameter.

� (i ) ∼ p(�|y ,ℳ
h
), where ℳ

h
∼ p(ℳ

h
|y ).

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.70007, W
iley O

nline L
ibrary on [18/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



       |  27A TUTORIAL ON BMA FOR ERGMS

4.4  |  BMA results

In presenting the results, we briefly describe the computational aspects of the BMA procedure. For this 
empirical application using a subsample of 90 students, the full estimation process, comprising candi-
date model estimation and log marginal likelihood computation, took approximately 13 min and 9 s. 
These analyses were conducted on a machine equipped with an Apple M1 chip (16 GB RAM), macOS 
Sequoia Version 15.5, utilizing 6 cores for parallel processing. While the runtime reported here is repre-
sentative, it may vary depending on other factors (e.g., the number of iterations specified for posterior 
simulation and marginal likelihood estimation). Nevertheless, the results demonstrate that the proposed 
method is computationally feasible in practical settings.

We note that, from this point on, we use the term attribute effects to refer to the ‘nodecov’ effects 
of extraversion, openness, and smoking status. First, none of the candidate models faced any estimabil-
ity issues (e.g., multicollinearity, optimization, or degeneracy). Table 2 subsequently presents all seven 
candidate models in terms of their prior model probabilities, posterior model probabilities, and Bayes 
factors. The first column specifies which terms are included in each candidate model (Models 1 through 
7, denoted M1–M7). The second column lists the prior model probabilities, calculated as 1

7

, reflecting 
equal prior weight for each candidate model. The third column provides the posterior model probabili-
ties obtained after BMA. The fourth column reports the Bayes factors.

Inspection of Table 2 shows that the first three models (M1, M2, and M3) accounted for 97% of 
the total posterior model probability, indicating much stronger support from the data compared to the 
remaining candidate models. Notably, the posterior probability of the best model (M1) was .600, sug-
gesting that while it was clearly favoured, it did not overwhelmingly dominate the model space. Model 1, 
which includes all three attribute effects, outperformed all other candidate models in terms of posterior 
model probability.

When only the openness to experience effect was excluded in Model 2, the posterior probability 
dropped but still remained at a reasonable level (.333). However, in subsequent models that excluded 
the extraversion or smoking effects, the posterior probability decreased substantially. For example, in 
Model 3, which excludes both the openness and smoking effects, the posterior probability dropped 
to  .041.

The Bayes factor (BF
1r

) represents the relative predictive performance of the best model compared 
to the model in row r . A similar pattern to that observed in the posterior probabilities emerges here. 
For example, the Bayes factor BF

12
= 1. 803 indicates that Model 1 (which includes all three attribute 

effects) was 1.803 times better than Model 2 (which includes the extraversion and smoking but not the 
openness effect) in explaining the data. In contrast, BF

14
= 22. 433 for Model 4—which includes the 

T A B L E  2   Prior/posterior model probabilities and Bayes factors.

Model p(�) p(�|data) BF
1r

M1: edges + gwesp + extraversion + openness + smoke + 
gender + class

.143 .600 1.000

M2: edges + gwesp + extraversion + smoke + gender + class .143 .333 1.803

M3: edges + gwesp + extraversion + gender + class .143 .041 14.683

M4: edges + gwesp + extraversion + openness + gender + class .143 .027 22.433

M5: edges + gwesp + openness + gender + class .143
6. 399× 10− 10 9. 372× 108

M6: edges + gwesp + smoke + gender + class .143
3. 472× 10− 12 1. 727× 1011

M7: edges + gwesp + openness + smoke + gender + class .143
1. 240× 10− 20 4. 838× 1019

Note: gwesp refers to the geometrically weighted edgewise shared partner. extraversion and openness are personality trait scores reflecting 
students' levels of extraversion and openness to experience, respectively. smoke is a binary indicator for smoking status (0 = does not smoke, 
1 = smokes). The effects of these three exogenous covariates were modeled using the nodecov term. gender is a binary indicator for student 
gender (0 = male, 1 = female). class indicates classroom membership. The effects of these two control variables were modeled using the 
nodematch term.
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28  |      HEO et al.

extraversion and openness but not the smoking effect—shows that Model 1 explained the data 22.433 
times better than Model 4.

Table 3 displays the evidence of parameter inclusion and summary statistics based on the model-averaged 
posterior distribution. According to the posterior inclusion probabilities, all three attribute effects showed 
stronger evidence for inclusion than expected under the prior, with posterior probabilities exceeding the prior 
value of .571. The extraversion effect had the highest posterior inclusion probability (1.000) and an extremely 
large inclusion Bayes factor of 1. 166× 109, indicating that, across all candidate models, those including this 
effect were vastly more likely than those excluding it. This finding therefore provides decisive support for 
the inclusion of extraversion in predicting friendship formation in the college network. The openness effect 
showed weaker evidence, with a posterior inclusion probability of  .626 and an inclusion Bayes factor of 1.258. 
Although the posterior inclusion probability exceeded the prior, the Bayes factor suggests minimal support 
for including this attribute effect. The smoking status effect had a posterior inclusion probability of .932 and 
an inclusion Bayes factor of 10.348, providing substantial support for its inclusion. Overall, while all three 
attribute effects were supported to some extent, the results suggest that the extraversion and smoking status 
effects are more predictive of social tie formation in the network than the openness effect.

Summary statistics in Table 3 provide information about the size and direction of the parameters 
associated with the three attribute effects on friendship in the college network. The coefficient of .325 
for extraversion indicates the mean log-odds of friendship formation associated with being more extro-
verted, after averaging over candidate models and controlling for other covariates. The exponentiated 
value, e0.325 ≈ 1. 384, indicates that with each unit increase in extraversion, the likelihood of forming 
a friendship increased by approximately 38.4%, on average, after adjusting for other variables. The 
coefficient for openness was −.017. The exponentiated value, e − 0.017 ≈ 0. 983, implies a slight decrease 
(about 1.7%) in the likelihood of forming a friendship tie with each unit increase in openness, holding 
other terms constant. Finally, the coefficient for smoking status was .173. The exponentiated value, 
e
0.173 ≈ 1. 189, suggests that, on average, students who smoke were about 18.9% more likely to form 

friendship ties compared to non-smokers, holding all else constant.
In sum, the mean coefficients in Table 3 indicate positive associations for extraversion and smoking 

status with friendship formation, and a small negative association for openness, with extraversion show-
ing the strongest effect, followed by smoking status and openness. The strength of the evidence also 
varies across the three attribute effects. Extraversion and smoking status both have posterior inclusion 
probabilities close to 1 and large inclusion Bayes factors (1. 166× 109 and 10.348, respectively), suggesting 
substantial to decisive evidence for inclusion. In contrast, openness has a smaller coefficient and a weaker 
inclusion Bayes factor (1.258), indicating only minimal support for inclusion. This pattern reflects differ-
ential levels of uncertainty about each attribute's relevance when averaged across the candidate models. 
We note that including a ‘null’ candidate model with no attribute effects can serve as a useful baseline 
when the research question considers the possibility that none of the attributes are relevant. However, in 
our empirical analysis, we excluded such a model because our focus was to evaluate which of the three 
attributes might matter, under the assumption that at least one was theoretically meaningful.

T A B L E  3   Summary of model-averaged posterior distribution and evidence of parameter inclusion.

Parameter M SD p(incl) p(incl|y ) BF
incl

Network ∼ extraversion .325 .108 .571 1.000
1. 166× 109

Network ∼ openness −.017 .152 .571 .626 1.258

Network ∼ smoke .173 .166 .571 .932 10.348

Note: M and SD refer to the mean and standard deviation of the model-averaged posterior distribution for the parameter, respectively. p(incl) 
refers to prior inclusion probability. p(incl|y ) refers to posterior inclusion probability. BF

incl
 refers to the inclusion Bayes factor. network refers 

to the college friendship network. extraversion and openness are personality trait scores reflecting students' levels of extraversion and openness 
to experience, respectively. smoke is a binary indicator for smoking status (0 = does not smoke, 1 = smokes). The effects of these three 
exogenous covariates were modelled using the nodecov term.
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       |  29A TUTORIAL ON BMA FOR ERGMS

4.4.1  |  Estimation results for candidate models

For comparison purposes, parameter estimates from each candidate model are presented in Table  4. 
According to the best-fitting model (M1 in Table 2), the estimated coefficients for the extraversion, open-
ness, and smoking status are .323, −.028, and .189, respectively. These values are close to the model-averaged 
estimates from BMA (.325, −.017, and .173; see Table 3), which may give the impression that model averag-
ing offers little additional benefit. However, it is important to recognize that the BMA estimates are com-
puted by averaging across all candidate models, weighted by their posterior model probabilities. Given that 
the posterior model probability of M1 is approximately .600, the BMA estimates provide a more nuanced 
summary that incorporates uncertainty in model selection, rather than relying solely on a single model. 
This distinction becomes especially relevant when examining how parameter estimates vary across models. 
For example, the coefficient for openness takes on positive values in models such as M5 and M7, while the 
coefficient for smoking status reaches values as high as .263 in M7. These variations underscore the risk 
of overconfidence and potential misinterpretation when relying on a single, possibly misspecified, model.

4.5  |  Sensitivity analysis of prior model probabilities

A critical aspect of implementing BMA, as noted in the ‘Practical Considerations’ subsection, is the specification 
of prior probabilities over the model space. Our initial analyses employed a uniform prior.3 However, researchers 
are encouraged to test alternative prior specifications to assess the robustness of their BMA results. To examine 
the impact of different prior settings, we conducted a sensitivity analysis of prior model probabilities. We looked 
into two distinct approaches: one using a beta-binomial prior and another using a theory-informed prior.

4.5.1  |  Beta-binomial prior

Assigning a uniform prior over models in the candidate pool is regarded as a neutral choice (Hoeting 
et al., 1999); however, this approach has an unintended consequence. When the prior is re-expressed in terms 
of model size (i.e., the number of included predictors), the implied prior is no longer uniform. Because there 

 3We follow a common convention in the BMA literature by first presenting results based on diffuse prior settings and subsequently examining 
alternative specifications. This order reflects practices adopted in previous BMA studies (see, e.g., Berkhout et al., 2024; Hinne et al., 2020; van 
den Bergh et al., 2021).

T A B L E  4   Parameter estimates for each candidate model.

Parameter M1 M2 M3 M4 M5 M6 M7

Edges −5.697 −5.629 −5.567 −5.554 −6.074 −6.150 −6.176

Gwesp 1.321 1.291 1.319 1.318 1.437 1.408 1.409

Extraversion .323 .325 .335 .347

Openness −.028 −.057 .220 .230

Smoke .189 .195 .249 .263

Gender .949 .925 .927 .931 .909 .936 .924

Class 4.853 4.823 4.812 4.820 4.689 4.708 4.732

Note: M1 through M7 correspond to the candidate model specifications listed in Table 2. gwesp refers to the geometrically weighted edgewise 
shared partner. extraversion and openness are personality trait scores reflecting students' levels of extraversion and openness to experience, 
respectively. smoke is a binary indicator for smoking status (0 = does not smoke, 1 = smokes). The effects of these three exogenous covariates 
were modeled using the nodecov term. gender is a binary indicator for student gender (0 = male, 1 = female). class indicates classroom 
membership. The effects of these two control variables were modeled using the nodematch term.
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30  |      HEO et al.

are 
(
p

x

)
 models that include x out of p possible predictors, the uniform prior assigns more total probability 

to those values of x with many such combinations. As a result, the implied distribution over model size is 
bell-shaped, with most mass around p∕2. As articulated in van den Bergh et al. (2021), Wilson et al. (2010), 
Ley and Steel (2009), and Castillo et al. (2015), this bias disproportionately favours models that include ap-
proximately half the total covariates, thereby down-weighting both sparse and dense model specifications. 
Such implicit preferences can distort inference, especially in psychological applications of ERGMs, where 
theoretical considerations may motivate either a parsimonious set of terms or richly parameterized models.

An alternative approach is the beta-binomial model prior. This prior first assigns equal mass to each 
possible model size (i.e., the number of included predictors, x = 0,…, p) and then distributes that mass 
uniformly across the models of that size. To set the hyperparameters � and �, we followed van den 
Bergh et al. (2021) and repeated the BMA analysis using � = � = 1. This choice ensures a more agnostic 
stance to model size across the candidate model space. Other variants have been proposed in the liter-
ature. For instance, Wilson et al. (2010) suggested setting � = 1 and � = �p, where � is a user-specified 
parameter. As another example, Castillo et  al.  (2015) proposed setting � = 1 and � = pu, where u is 
specified by researchers. Both approaches place greater prior weight on models with fewer predictors.

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.70007, W
iley O

nline L
ibrary on [18/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



       |  31A TUTORIAL ON BMA FOR ERGMS

The results of the sensitivity analysis under the beta-binomial prior, shown in Table 5, illustrate how 
this model prior influences prior and posterior inclusion probabilities, as well as inclusion Bayes factors, 
for the attribute covariates in the college friendship network. Under this setting, the prior inclusion proba-
bilities for all three covariates are approximately .429, which is slightly lower than the uniform prior value 
of .571 used in the main analysis (Table 3). Despite the lower prior probabilities, the posterior inclusion 
probabilities remain largely stable for extraversion and smoking status. Specifically, the posterior inclusion 
probability is 1.000 for extraversion and .788 for smoking status. For openness, however, the posterior in-
clusion probability decreases to .407, falling below the prior inclusion probability. The inclusion Bayes fac-
tors changes accordingly under this prior specification. Extraversion continues to receive decisive support, 
with a Bayes factor of 4. 750× 108, down from 1. 166× 109 under the uniform prior. Although numerically 
reduced, this change does not alter the interpretation of the strength of the evidence. The Bayes factor 
for smoking decreases to 4.970, compared to 10.348 under the uniform prior, indicating that while the 
strength of evidence is halved, it still supports inclusion. In contrast, the evidence for openness weakens, 
with a Bayes factor of .916, which slightly favours its exclusion. These findings highlight that, compared 
to extraversion and smoking status, both of which consistently receive evidence for inclusion, openness 
appears more sensitive to prior specification and may not be supported in alternative prior settings.

4.5.2  |  Theory-informed prior

Researchers may adjust prior model probabilities to reflect substantive and theoretical considerations, 
particularly in contexts where prior knowledge identifies certain covariates as theoretically important 
for explaining and predicting relational patterns. This theory-informed approach, by assigning higher 
prior weights to models containing such covariates, facilitates hypothesis testing grounded in substan-
tive theory rather than relying solely on data-driven evidence in the BMA process. In this second ex-
ample, we conducted a sensitivity analysis by hypothetically assuming that models including openness 
better explain and predict friendship ties. Accordingly, we assigned a prior model probability of .3 to the 
candidate model containing openness as a nodal covariate, while the remaining models received equal 
prior weights of .117. This setup implies that the model with openness received approximately three 
times more support at the prior stage. We selected this scenario because openness was the covariate 
that received less empirical support than extraversion or smoking status in the initial analysis. In this 
regard, the sensitivity analysis serves to assess the robustness of the findings under an alternative prior 
structure that emphasizes the effect of openness, even though earlier results identified extraversion and 
smoking status as more influential predictors.

T A B L E  5   Sensitivity analysis of prior model probabilities and evidence of parameter inclusion.

Parameter p(incl) p(incl|y ) BF
incl

Beta-binomial prior

Network ∼ extraversion .429 1.000
4. 750× 108

Network ∼ openness .429 .407 .916

Network ∼ smoke .429 .788 4.970

Theory-Informed Prior

Network ∼ extraversion .467 1.000
6. 931× 108

Network ∼ openness .650 .626 .903

Network ∼ smoke .467 .932 15.768

Note: p(incl) refers to prior inclusion probability. p(incl|y ) refers to posterior inclusion probability. BF
incl

 refers to the inclusion Bayes factor. 
Network refers to the college friendship network. Extraversion and openness are personality trait scores reflecting students' levels of 
extraversion and openness to experience, respectively. Smoke is a binary indicator for smoking status (0 = does not smoke, 1 = smokes). The 
effects of these three exogenous covariates were modeled using the nodecov term.
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The results of this analysis are summarized in Table  5. Under the theory-informed prior, where 
greater weight was assigned to the candidate model including openness, the prior inclusion probability 
for openness increased to .650, while the probabilities for extraversion and smoking status were set 
to .467. Despite this adjustment, the posterior inclusion probabilities and inclusion Bayes factors re-
mained largely consistent with those obtained under the beta-binomial prior. Specifically, the posterior 
inclusion probability for openness was .626, and the corresponding Bayes factor was .903, suggesting 
evidence for exclusion. In contrast, extraversion and smoking status maintained strong support, with 
posterior inclusion probabilities of 1.000 and .932 (identical to those in Table 3) and Bayes factors of 
6. 931× 108 and 15.768, respectively. These findings suggest that even when greater prior weight is as-
signed to openness based on substantive considerations, the data continue to favour extraversion and 
smoking status as more robust predictors of tie formation in the friendship network.

In summary, across both sensitivity analyses, extraversion and smoking status consistently received 
strong support for inclusion, as indicated by high posterior inclusion probabilities and large Bayes fac-
tors, regardless of the prior model probability settings. Openness, by contrast, showed evidence toward 
exclusion, with its inclusion Bayes factor falling below 1 under both the beta-binomial and theory-
informed priors. These sensitivity analyses therefore suggest that the main conclusions regarding the 
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importance of extraversion and smoking status are robust to changes in prior assumptions, whereas the 
role of openness remains more uncertain and sensitive to prior specification.

4.6  |  Theoretical implications of the results

4.6.1  |  Effects of exogenous covariates

Consistent with our theoretical prediction, extraversion emerged as a robust and positive predictor of 
friendship in the college network. Specifically, we found that individuals higher in extraversion were 
more likely to maintain a greater number of friendships. This finding supports the theoretical pos-
tulate that more extraverted individuals tend to form and maintain more friendship ties due to their 
comparatively higher levels of sociability, talkativeness, assertiveness, and proactive engagement with 
peers (Rubin et al., 2006; Selfhout et al., 2010; Wagner et al., 2014). The BMA results also support the 
inclusion of smoking status as a relevant covariate. Specifically, we found that individuals who smoke 
were more likely to have more friendships than those who do not. This finding aligns with the theo-
retical idea that smoking functions as a visible behavioural marker that signals and enhances social 
status within college peer culture, thereby increasing one's attractiveness as a friend (Lakon et al., 2015; 
Schaefer et al., 2012).

By contrast, openness to experience was less important as a predictor of the number of friendships 
and even showed a small negative effect. This finding suggests that, within this particular network, 
openness may not be a salient factor in explaining or predicting friendship—or, if it is, that individu-
als higher in openness tend to maintain smaller friendship networks. Despite theoretical expectations 
that higher openness would lead individuals to engage with a broader range of people and social con-
texts—resulting in larger friendship networks—we did not observe this pattern. However, this result 
is consistent with prior research reporting mixed or nonsignificant effects of openness on friendship 
(Harris & Vazire, 2016).

One possible explanation for this finding, as proposed by Harris and Vazire (2016), is that openness 
to experience may be less directly associated with friendship than other Big Five traits, such as extra-
version. Instead, openness may be more relevant to outcomes like an individual's position within the 
friendship network or the diversity of their friendship ties. Harris and Vazire (2016) also emphasize that 
openness is closely linked to personal values and attitudes, which are more likely to influence friend-
ships through dyadic mechanisms such as homophily, rather than through increased social activity. This 
suggests that openness to experience may shape the formation and maintenance of friendships primarily 
when individuals share similar levels of openness.

Taken together, these results demonstrate how BMA can be used not only to assess statistical sup-
port for covariates but also to critically revisit and refine theoretical expectations. The strong evidence 
for extraversion and smoking status affirms their roles as socially consequential traits in structuring 
friendships within college networks. In contrast, the limited support for openness highlights the need to 
reconsider its theoretical relevance and encourages further empirical investigation into the mechanisms 
and contexts through which this trait may influence friendship.

4.6.2  |  Effects of endogenous terms and control variables

With respect to the endogenous and control effects, inspection of the various model coefficients in 
Table 2 shows that the GWESP term, as well as the gender and class homophily terms, were all posi-
tive predictors of friendship across the candidate models. These results lend support to several theo-
retical frameworks: balance theory, which posits a tendency toward triadic closure in social networks 
(Heider, 1958); the homophily principle, which suggests that similarity in gender promotes friendship 
formation in college settings (McPherson et  al.,  2001); and focus theory, which argues that shared 
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contexts—such as being in the same class—structure opportunities for interaction and increase the 
likelihood of within-class friendships (Feld, 1981).

5  |  EMPIR ICA L A NA LYSIS OF THE FLOR ENTINE 
M A R R I AGE A L LI A NCE NET WOR K : A PR EV IEW

In addition to the college friendship network example presented earlier, we provide a second empirical 
example based on the Florentine marriage alliance network, which is available via the OSF at https://​
osf.​io/​g9eq4/​​. This second example is included as supplementary material to avoid overloading the 
main article, while still showcasing additional aspects of ERGMs relevant to implementing BMA. The 
structure of this example parallels that of the college friendship network analysis, allowing readers to 
follow the analysis in a similar fashion. To preview a key conceptual insight from the second example 
and encourage readers to consult the full analysis, we briefly describe the behaviour of Bayes factors and 
their sensitivity to prior choice in the following subsection.

5.1  |  The Jeffreys–Lindley paradox and Bayes factors

An important point illustrated in the second example concerns the behaviour of Bayes factors in the 
application of ERGMs. In estimating the candidate models and obtaining their marginal likelihoods, we 
employed weakly informative priors (a mean vector of zeros and a diagonal covariance matrix with ele-
ments set to 4). Although such priors are generally recommended for ERGMs (Krause et al., 2020), they 
may introduce a degree of arbitrariness that can give rise to the Jeffreys–Lindley paradox ( Jeffreys, 1961; 
Lindley, 1957; Wagenmakers & Ly, 2023). As noted by Mulder et al. (2024) in the context of ERGMs, 
this paradox describes the tendency of Bayes factors to increasingly favour simpler models as network 
size grows, even when the data contain subtle signals that support more complex alternatives. When the 
simpler model is in fact true, the Bayes factor can become arbitrarily large in its favour (i.e., diverge to 
infinity), causing the posterior probability of the simpler model to converge to one. This tendency was 
observed in the second example, and we illustrate how researchers can address it by introducing the unit 
information prior approach for ERGMs proposed by Mulder et al. (2024) and conducting a sensitivity 
analysis.

6  |  DISCUSSION

With the growing integration of social network analysis into psychology, ERGMs have become increas-
ingly popular tools for explaining and predicting the social network structures underlying psychological 
phenomena. Valid inference in ERGMs relies on the correct specification of both endogenous and ex-
ogenous terms, guided by substantive theory.4 However, accurately capturing the true generative pro-
cess behind network formation with an ERGM remains a complex and ongoing challenge in applied 
settings.

The primary objectives of this tutorial were to illustrate BMA for ERGMs as a multi-model inferen-
tial framework and to demonstrate its application through the theory-driven analysis of empirical social 
network data. This tutorial and implementation guide represent one of the first empirical applications of 
BMA for ERGMs and offer detailed and practical guidelines to support researchers in navigating the-
oretical and methodological decisions in this process. Given the advantages of BMA, we outlined how 

 4Although this tutorial has been motivated by the need to correctly specify endogenous and exogenous terms to capture the true network-
generating processes, this is not the only important modelling assumption. To provide a broader overview of additional considerations, we 
include a discussion in Appendix 1 for interested readers.
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it can be integrated into ERGMs as a principled alternative to address issues of model misspecification 
and the limitations of single-model inference.

6.1  |  Implications of BMA for ERGMs

Our empirical analysis highlights several benefits of using BMA for ERGMs. With weakly informative 
priors and uniform prior model probabilities, the best-fitting model received a posterior model prob-
ability of .600 in the college friendship network and .578 in the Florentine marriage alliance network 
(see Data S1). This indicates that while the best-fitting model in each example was the most plausible 
after observing the network structure, other models still contributed to explaining and predicting the 
observed networks. If only the best model were selected for single-model inference, such a decision 
could lead to overconfidence in its results and ignore other models that could account for additional 
uncertainty. If the selected model does not reflect the true network-generating process, thus constitut-
ing a misspecified model, researchers risk drawing conclusions that fail to capture the underlying data-
generating mechanism. BMA mitigates this overconfidence by considering multiple candidate models 
and provides a more nuanced understanding of the network structure. Referring back to our empirical 
illustration, we explicitly considered parameter estimates not only from the best model but also from 
other plausible candidate models through BMA. This is an obvious advantage of using BMA that miti-
gates the risks associated with exponential random graph modelling in applied research.

In addition, the Bayesian model-averaged posterior distribution and the inclusion Bayes factor in-
corporate parameter estimates from all candidate models. The quantification of averaged effects again 
avoids the pitfalls of relying on estimates of a single model, which could lead to drawing inferences 
based on capitalization on chance. In single-model inference, parameter estimates might fluctuate with 
each refitting, whereas BMA averages and updates parameters based on multiple models. As such, BMA 
incorporates contributions of parameters under consideration into a comprehensive overview of the 
effects. This process, hence, naturally accounts for the information from multiple models and ensures 
robust and reliable inference. We also note that determining the pool of candidate models and assigning 
weights to the model space are critical methodological steps in BMA. As illustrated in our empirical ap-
plication, we encourage researchers to engage in these processes to assess the robustness of their results.

An important limitation of this tutorial is that we applied BMA to three exogenous covariates. That 
is, we did not extend BMA to many other types of ERGM specification decisions that researchers 
commonly face. These include BMA for theoretically central endogenous effects, for control variables 
(whether endogenous or exogenous), and for comparing alternative operationalizations of a given the-
oretical construct. Although our demonstration covers only a segment of the broader model decision 
space, the approach is, in principle, adaptable to any set of theoretically motivated terms and associated 
specification choices. Indeed, BMA may be even more valuable in more complex decision contexts, 
where multiple a priori models are plausible. As long as no single model overwhelmingly dominates 
the posterior model probability, BMA provides a principled framework for accounting for model un-
certainty. If one model does dominate, BMA effectively reduces to single-model selection (Hinne 
et al., 2020), though it remains valuable to make that dominance explicit.

6.2  |  Future methodological innovations

This tutorial features a novel empirical implementation of BMA for ERGMs, marking not only a practi-
cal demonstration but also a starting point for further methodological development. In the course of 
conducting this tutorial, several methodological considerations emerged that we believe warrant future 
research. Here, we outline directions for advancing BMA in the context of ERGMs.

First, future development should be concerned with computational and algorithmic advancements. 
In outlining BMA for ERGMs, our analyses relied on the Bergm package to compute Bayes factors, 
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posterior model probabilities, and inclusion Bayes factors given a relatively small pool of candidate 
models. However, if researchers consider models with multiple complex endogenous dependencies (e.g., 
geometrically weighted terms or different decay parameters for geometrically weighted degree terms) 
based on substantive theories, in addition to multiple exogenous covariates, computational challenges 
are likely to arise. For example, averaging over these complex models may lead to estimation and con-
vergence issues, such as poorly mixed MCMC samples, discontinued optimization, and inestimable 
parameters (e.g., Duxbury, 2021; Lusher et al., 2013). In addition, the Bergm package itself does not 
address model degeneracy, which occurs when MCMC samples become degenerate, particularly in 
larger networks or when models contain dyad-dependent network statistics. These obstacles could pose 
practical challenges for researchers, potentially leading to the exclusion of theoretically relevant endog-
enous or exogenous terms from the BMA analysis. Indeed, our empirical example did not address how 
researchers should manage model degeneracy when it arises in the context of BMA for ERGMs. In this 
regard, a valuable contribution would involve developing algorithms to detect and mitigate estimation 
issues, thus allowing reliable parameter estimation without convergence issues. Such algorithms could 
also integrate parameter estimation and model-averaging processes into a single, streamlined step for 
enhanced computational efficiency. In particular, tools that enable both posterior sampling and mar-
ginal likelihood estimation within a unified routine would greatly facilitate the practical implementation 
of BMA for ERGMs. These advancements would not only address these technical limitations but also 
make BMA for ERGMS more accessible to applied researchers.

Defining model-searching algorithms presents another interesting future research avenue. The cur-
rent tutorial explored candidate models given a small fixed set of exogenous covariates. However, as 
researchers include increasing numbers of endogenous or exogenous effects and further interactions 
between them, the size of the pool of candidate models may become staggeringly large. Under such 
circumstances, manually checking the estimability of candidate models and excluding inestimable mod-
els can be challenging and inefficient. Therefore, more sophisticated model search algorithms can be 
devised to automatically specify candidate models and exclude those with little to no explanatory power 
for the observed data.

Finally, our tutorial focused on a basic class of ERGMs with undirected (i.e., symmetric) ties. 
However, ERGMs can be extended to accommodate more complex network types, including directed 
and valued networks (Cranmer et al., 2020; Desmarais & Cranmer, 2012). At present, existing software 
packages do not support Bayesian inference, and therefore BMA, for these ERGMs. Future method-
ological work could usefully focus on developing tools and frameworks that allow BMA to be applied in 
these extended contexts. Such developments would significantly expand the applicability of BMA and 
support researchers working with a wider range of network data structures.

7  |  CONCLUDING R EM A R K S

We illustrated BMA for ERGMs and demonstrated its implementation through a theoretical and prac-
tical guide, supported by accompanying R code. This novel application of BMA to ERGMs marks 
an important first step, guiding applied researchers wishing to implement the method and laying the 
groundwork for future methodological advancements. We envision promising developments that build 
on this foundation, and we hope that this work inspires further innovations. Ultimately, such develop-
ments could help facilitate the broader adoption of BMA among exponential random graph modelers 
in psychology and related fields to take full advantage of model averaging in social network analysis.
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A PPEN DI X 1 :  ADDITIONAL MODELLING CONSIDERATIONS FOR ERGMS

The current tutorial has focused on the BMA framework for ERGMs, motivated by the need to cor-
rectly specify endogenous and exogenous network statistics to ensure valid inference. In the current 
appendix, we introduce other modelling considerations for ERGMs that may benefit applied research-
ers. Specifically, we briefly discuss two aspects: (1) additional assumptions underlying ERGMs and 
(2) sample size requirements for reliable estimation. These discussions are intended to provide a more 
comprehensive perspective on ERGM implementation.

Further assumptions

In addition to the correct specification of endogenous and exogenous terms, ERGMs rely on several 
additional assumptions that warrant consideration in empirical applications. These include (1) the ho-
mogeneity of effects across the network, (2) the local dependence assumption, and (3) the assumption 
that the observed network is measured without error.

First, the homogeneity of effects assumes that the influence of network statistics—such as reciprocity 
or transitivity—applies uniformly across all nodes and dyads in the network (Robins et al., 2007). In 
real-world networks, however, individuals may differ in how they form ties. In such cases, researchers 
may assess this assumption by including interaction terms (e.g., between a dyadic characteristic and the 
reciprocity effect; see Lusher et al., 2013).

Second, the local dependence assumption posits that dependencies in the network are limited to 
certain edges or small, localized subgraphs (Schweinberger & Handcock, 2015). Under this assumption, 
the node set is partitioned into subgroups such that dependencies are allowed within each subgroup, 
but independence is assumed between subgroups. As noted by Schweinberger and Handcock (2015), an 
advantage of the local dependence is that it does not impose rigid assumptions about the structure or 
strength of dependence within subgraphs.

Finally, like other social network models, ERGMs typically assume that the observed network is 
measured without error. That is, all ties (or the absence thereof) are recorded accurately and reflect 
the true underlying relationships. In real-world relational data, measurement errors may arise and can 
potentially distort observed network configurations and network-derived statistics such as degree cen-
trality (e.g., Borgatti et al., 2024; Wang et al., 2012). Even so, Borgatti et al. (2024) found that central-
ity measures tend to be robust to small amounts of error (e.g., up to 10%), suggesting that computing 
such measures may still be reasonable even when some degree of measurement inaccuracy is expected. 
Nevertheless, they emphasize the importance of striving for more accurate data collection whenever 
possible.

Sample size requirements

Determining the appropriate sample size for reliably estimating ERGMs remains an open and complex 
area of research. Most prior work on this topic has been conducted within the frequentist framework, 
and definitive guidelines are limited. As Krivitsky and Kolaczyk (2015) emphasize, sample size con-
siderations depend not only on the number of observations but also on structural properties of the 
network, such as the number of nodes. Relatedly, Vega Yon et al. (2021) examined the power of ERGM 
estimation across varying sample sizes, population parameters, and network characteristics. Their simu-
lation studies indicated that, for effect sizes ranging from .5 to 1.0, a discovery rate of approximately  .75 
could be achieved for the number of transitive triads in networks consisting of 30 to 50 nodes—net-
works considered relatively small. As such, generalizable rules remain elusive; yet, researchers may con-
sult Vega Yon (2023) for practical guidance on sample size requirements for ERGMs.
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