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Abstract
Latent state-trait (LST) theory provides a psychometric framework that facilitates the mea-
surement of long-term trait change and short-term state variability in longitudinal data. While LST
theory has guided the development and extension of linear latent growth models within its
theoretical framework, the integration of piecewise growth models (PGMs) into the LST theory
framework remains uninvestigated. PGMs are well suited for modeling nonlinear developmental
processes comprised of distinct stages, which frequently arise in psychological and educational
research. Their ability to capture phase-specific changes makes them a useful tool for applied and
methodological researchers. This paper introduces a novel measurement approach that integrates
PGMs into the framework of LST theory by presenting single-indicator piecewise growth models
(SI-PGMs) and multiple-indicator piecewise growth models (MI-PGMs). We detail the model
specifications for both SI-PGMs and MI-PGMs. For SI-PGMs, we define the reliability coefficient;
for MI-PGMs, we define the consistency coefficient, occasion specificity coefficient, and reliability
coefficient. We then conduct simulations to evaluate the models’ performance in accurately
recovering growth parameters and capturing true reliability. The simulation results indicated that
SI-PGMs and MI-PGMs successfully recovered growth parameters and performed comparably in
the absence of situational influences. However, MI-PGMs outperformed SI-PGMs when situational
influences were present. We conclude by outlining directions for future research and providing
Mplus syntax to support the dissemination of the models.

Keywords
latent state-trait theory, measurement theory, piecewise growth model, psychometrics,
reliability, repeated measurement

Understanding the dynamics of psychological constructs through longitudinal data is a corner-
stone of psychometric research, yet a critical issue exists: Measurement of psychological con-
structs cannot be fully separated from situational influences. Here, situational influences refer to
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transient conditions or external factors that can affect individuals’ thoughts, behaviors, or feelings
at a given time of measurement. Latent state-trait (LST) theory provides a framework for de-
composing variability in observed data into components attributable to traits, states, and mea-
surement errors (Geiser, 2020; Steyer et al., 1999, 2015). Integrating latent growth models into the
framework of LST theory is particularly effective for capturing how short-term state variability
deviates from the overall trait level, while concurrently modeling trait change over time. The
accuracy of measurement can be increased by taking into account interplays between traits and
situational influences. As such, applying the LST theory framework allows for a more reliable
interpretation of repeated measurements and enables a more nuanced understanding of underlying
longitudinal processes. These advantages have promoted the widespread methodological ap-
plication of LST theory within the context of linear latent growth modeling (Geiser, Bishop, et al.,
2013; Geiser et al., 2015; Geiser, Keller, & Lockhart, 2012).

In psychological and educational measurement, overall change patterns in repeated mea-
surements are often described by segmented growth over time. Piecewise growth models (PGMs),
a special type of latent growth model, offer flexibility in describing nonlinear growth curves
through separate growth phases. By specifying change points—called knots—to reflect stage-
specific growth rates, PGMs provide more relevant information about the phasic change process.
Recent years have witnessed a growing body of advancements in extending and evaluating PGMs
(Depaoli et al., 2023; Diallo & Morin, 2015; Heo, Jia, & Depaoli, 2024, 2025; Kohli & Harring,
2013; Liu & Perera, 2023). Despite these contributions, the measurement aspect of PGMs has
received relatively little attention. We highlight how incorporating PGMs within the LST theory
framework helps address the challenge of accurately quantifying trait and state variability in
segmented growth phases, a concern overlooked in current PGM applications. In addition, re-
searchers can capture the reliability of measurements and improve the interpretability of phasic
changes across both individual growth phases and the entirety of measurement occasions.

The primary objective of this paper is to bridge the gap between the theoretical potential of LST
theory and its practical application to PGMs by addressing the measurement of trait changes and
short-term state variability surrounding piecewise growth trends. Our methodology builds upon
Bishop et al. (2015), Geiser, Bishop, et al. (2013), and Geiser, Keller, and Lockhart (2013) that
utilized either single or multiple indicators for the formulation of models. Relatedly, we extend the
multiple-indicator approach of Steyer et al. (1997) by modeling nonlinear growth trajectories that
unfold across distinct phases. Compared to Steyer et al. (1997), our framework introduces latent
trait change factors that link the latent state variables across measurement occasions, enabling the
simultaneous decomposition of trait and state components. In doing so, we explicitly incorporate a
knot component to model phase transitions and formally define and compute LST theory-based
coefficients (i.e., consistency, occasion specificity, and reliability). Our contributions offer a novel
measurement approach that integrates PGMs into LST theory, and we aim to encourage the
implementation of these methods in applied research settings.

The remaining sections of this paper are structured as follows. We first introduce the basics of
LST theory. We then define two PGMs based on the LST theory framework. This is followed by a
simulation study to evaluate the performance of the proposed models. We conclude with a short
discussion regarding the avenues for future research. Additionally, we provide Mplus syntax as a
resource for researchers.

Fundamentals of Latent State-Trait Theory

This section outlines the fundamental and core concepts of LST theory. For a more detailed
explanation, readers may consult Geiser (2020) and Steyer et al. (2015). In LST theory, several
latent variables are defined to quantify the components of traits, state residuals, and measurement
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errors. First, the latent state variable (τit) is defined as the conditional expectation of an observed
indicator yit, given the person and the situation variables:

τit dEðyitjPt, StÞ: (1)

In this definition, i denotes the ith indicator, and t represents a time point. The terms Pt and St
respectively denote the person and the situation variables at time t. Here, Pt and St are random
variables, whose values represent persons in situations at a given time. Thus, a value of the latent
state variable equals that person’s hypothetical intraindividual mean in a particular situation at a
given time. Next, the random measurement error variable (ϵit) is defined:

ϵit d yit � τit , (2)

which is the difference between an individual’s measured observed variable and the latent state
variable. The latent trait variable (ξ it) is then defined as the conditional expectation of an observed
variable given the person variable at time t (i.e., Pt):

ξ it dEðyitjPtÞ: (3)

Avalue of the latent trait variable is the intraindividual (true) mean of a person-at-time-t, where
the person-at-time-t represents a realized value of the random variable Pt. Lastly, the latent state
residual variable (ζ it) captures the deviation of an individual’s latent state scores from the latent
trait scores:

ζ it d τit � ξ it: (4)

The latent state residual variable represents the systematic influence of situations that shift
latent state scores from latent trait scores. Therefore, the presence of differences between an
individual’s state and trait scores indicates the presence of situational effects. Following the
formulations of four latent variables, an observed indicator yit can be decomposed as follows:

yit ¼ τit þ ϵit ¼ ξ it þ ζ it þ ϵit: (5)

The right-hand side of Equation (5) indicates that a measured variable is the sum of the latent
trait variable, the latent state residual variable, and the measurement error variable. Through this
decomposition, contributions of stable traits to measurements are isolated from situation-specific
variations.

Integration of Piecewise Growth Models into the LST
Theory Framework

In PGMs, a knot location is an important parameter that indicates the time point at which one
growth phase transitions to another. This change reflects a shift in the slope of the growth tra-
jectory. By specifying this knot, researchers can divide a longitudinal process into multiple phases,
each with its own rate of change. Because the knot acts as an additional parameter, PGMs add
complexity to model estimation when determining how and where the slope changes. In addition,
the number of measurement occasions is tied to model estimation and identification (Bollen &
Curran, 2006; Flora, 2008; Heo et al., 2025). According to Bollen and Curran (2006), at least five
measurement occasions are needed to identify a PGM with two linear phases if the knot is
positioned at the third time point. Having more measurement occasions additionally provides
information for a more precise estimation of phase-specific slopes.
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PGMs can be specified with a range of complexities. However, the linear-linear specification,
defined by a single knot that is assumed to exist at the population level and segments growth
trajectories into two distinct linear phases, remains among the most widely used in both
methodological (e.g., Depaoli et al., 2023; Heo, Jia, & Depaoli, 2024, 2025; Kohli & Harring,
2013; Kwok et al., 2010; Leite & Stapleton, 2011; Ning & Luo, 2017) and applied research (e.g.,
Chung et al., 2017; Heo et al., 2024; Jaggars & Xu, 2016; Kohli & Sullivan, 2019; Li et al., 2019;
Patrick & Schulenberg, 2011). These extant studies and applications suggest a widespread utility
due to the interpretative clarity and indicate that this linear-linear form with a single knot
characterizes typical findings. Note that while PGMs and their variants can be formulated with
multiple knots (for example methodological works, see Harring et al., 2021; Heo, Jia, & Depaoli,
2024; Lock et al., 2018), our primary objective here is not to exhaustively explore multiple-knot
specifications for PGMs within the LST theory framework. Rather, given the utility, interpret-
ability, and prevalence of linear-linear trends, we focus specifically on this basic form of PGM to
clearly illustrate how PGMs can be incorporated into the LST theory framework and to lay a
foundation for further extensions. In the following paragraphs, we show how to specify PGMs in
the framework of LST theory.

Single-Indicator Piecewise Growth Model

We first present the single-indicator piecewise growth model (SI-PGM). In SI-PGMs, single
indicators are used to measure latent constructs. Therefore, SI-PGMs assume that psychological
constructs of interest are strictly trait-like and do not depend on situational influences. Any
changes observed are attributable to changes in traits only. A path diagram illustrating an example
SI-PGM, with seven measurement occasions and a knot located at the fourth occasion, is provided
in Figure 1(A). An SI-PGM is formulated as follows:

yt ¼ ξ1 þmin
�
tj, tγ

�ðξ2 � ξ1Þ þmax
�
tj � tγ, 0

�ðξ3 � ξ2Þ þ ϵt, (6)

where ξ1 is the initial trait level, ξ2 � ξ1 is the first trait change, ξ3 � ξ2 is the second trait change,
ϵt is the error term, tj is the time metric referring to a time point j (e.g., t1 is equal to 0 because the
first time point is usually coded as 0), and tγ is the time metric for the knot location (e.g., tγ is equal
to 3 because the fourth occasion is the knot location). Note that the subscript i is omitted because
only a single indicator is taken into account in SI-PGMs. Given this model definition, the variance
of an observed indicator can be decomposed in the following manner:

varðytÞ ¼ σ2ξ1 þ
�
min

�
tj, tγ

��2
σ2ξ2�ξ1

þ �
max

�
tj � tγ, 0

��2
σ2ξ3�ξ2

þ 2min
�
tj, tγ

�
σðξ1, ξ2�ξ1Þ

þ 2min
�
tj, tγ

�
max

�
tj � γ, 0

�
σðξ2�ξ1, ξ3�ξ2Þ þ 2max

�
tj � tγ, 0

�
σðξ1, ξ3�ξ2Þ þ σ2

ϵt
,

(7)

where σ2 and σ, respectively, correspond to the variances of and covariances between factors, as
indicated by their subscripts.

LST theory introduces several coefficients such as reliability, consistency, and occasion
specificity. These coefficients quantify the degree of variability attributable to the precision of
measurements, trait effects, and situational influences, respectively. When there is only a single
indicator, short-term state variability cannot be separated from trait change and random mea-
surement errors. For this reason, in SI-PGMs, the only coefficient that can be defined is the
reliability (relðytÞ) coefficient:
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Figure 1. Example Path Diagrams. (A) Single-Indicator Piecewise Growth Model. (B) Multiple-Indicator
Piecewise Growth Model
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rel ytð Þ ¼

σ2ξ1 þ min tj, tγ
� �� �2

σ2ξ2�ξ1
þ max tj � tγ, 0

� �� �2
σ2
ξ3�ξ2

þ 2min tj, tγ
� �

σ ξ1, ξ2�ξ1ð Þ

þ2min tj, tγ
� �

max tj � tγ, 0
� �

σ ξ2�ξ1, ξ3�ξ2ð Þ þ 2max tj � tγ, 0
� �

σ ξ1, ξ3�ξ2ð Þ
var ytð Þ : (8)

The reliability coefficient, which ranges from 0 to 1, quantifies the proportion of measured
score variance attributable to systematic sources of variability rather than unsystematic mea-
surement error components. Higher values of the reliability coefficient indicate higher mea-
surement precision.

Multiple-Indicator Piecewise Growth Model

The second model we define is the multiple-indicator piecewise growth model (MI-PGM). In MI-
PGMs, multiple indicators are incorporated, which makes it possible to further decompose
observed variability to situational effects. Figure 1(B) describes a path diagram for an MI-PGM
with two indicators per measurement occasion across seven repeated measurements, with a knot
located at the fourth occasion. The formulation of MI-PGMs is as follows:

yit ¼ ωit þ λitξ1 þ λit min
�
tj, tγ

�ðξ2 � ξ1Þ þ λit max
�
tj � tγ, 0

�ðξ3 � ξ2Þ þ λitζ t þ ϵit , (9)

where ωit is an additive term to satisfy the unidimensionality assumption in LST theory (Steyer,
1989), and λit refers to the factor loadings of the ith indicator from latent state variables to observed
variables at time j. Compared to SI-PGMs, MI-PGMs include the subscript i to denote multiple
indicators. We can thus decompose the variance of an observed indicator as:

varðyitÞ ¼ λ2itσ
2
ξ1
þ λ2it

�
min

�
tj, tγ

��2
σ2
ξ2�ξ1

þ λ2it
�
max

�
tj � tγ, 0

��2
σ2
ξ3�ξ2

þ 2λ2it min
�
tj, tγ

�
σðξ1, ξ2�ξ1Þ þ 2λ2it min

�
tj, tγ

�
max

�
tj � tγ, 0

�
σðξ2�ξ1, ξ3�ξ2Þ

þ 2λ2it max
�
tj � tγ, 0

�
σðξ1, ξ3�ξ2Þ þ λ2itσ

2
ζ t
þ σ2

ϵit
:

(10)

With multiple indicators, we can define two additional coefficients—consistency and occasion
specificity—alongside reliability to quantify trait effects and situational effects. The consistency
(conðyitÞ) coefficient reflects the degree of trait effects:

con yitð Þ ¼

λ2itσ
2
ξ1
þ λ2it min tj, tγ

� �� �2
σ2
ξ2�ξ1

þ λ2it max tj � tγ, 0
� �� �2

σ2ξ3�ξ2

þ2λ2it min tj, tγ
� �

σ ξ1, ξ2�ξ1ð Þ þ 2λ2it min tj, tγ
� �

max tj � tγ, 0
� �

σ ξ2�ξ1, ξ3�ξ2ð Þ

þ2λ2it max tj � tγ, 0
� �

σ ξ1, ξ3�ξ2ð Þ
var yitð Þ : (11)

The consistency coefficient ranges from 0 to 1, and higher values mean that a measure reflects
more trait influences. Next, the occasion specificity (osðyitÞ) coefficient quantifies situational
influences:

osðyitÞ ¼
λ2itσ

2
ζ t

varðyitÞ: (12)

The occasion specificity represents the proportion of indicator variance attributable to situ-
ational effects. The occasion specificity also ranges from 0 to 1, with higher values indicating that a
measure reflects more situational influences. Finally, the reliability (relðyitÞ) coefficient quantifies
the degree of measurement precision:
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rel yitð Þ ¼

λ2itσ
2
ξ1
þ λ2it min tj, tγ

� �� �2
σ2ξ2�ξ1

þ λ2it max tj � tγ, 0
� �� �2

σ2
ξ3�ξ2

þ2λ2it min tj, tγ
� �

σ ξ1, ξ2�ξ1ð Þ þ 2λ2it min tj, tγ
� �

max tj � tγ, 0
� �

σ ξ2�ξ1, ξ3�ξ2ð Þ

þ2λ2it max tj � tγ, 0
� �

σ ξ1, ξ3�ξ2ð Þ þ λ2itσ
2
ζ t

var yitð Þ : (13)

The reliability coefficient is the total proportion of true score variability and is interpreted in the
same way in SI-PGMs described earlier. Note that reliability is the sum of consistency and
occasion specificity.

Simulation Study

Design

We conducted a simulation study to evaluate the performance of SI-PGM and MI-PGM in re-
covering growth parameters and true reliability. Accordingly, we examine how well these models
capture underlying piecewise growth patterns while assessing measurement properties. Our design
included three factors: sample sizes, the magnitude of situational effects, and the analysis models.
The sample sizes were 100, 250, and 500 to represent a range from small to large sizes common in
simulation studies using PGMs (Depaoli et al., 2023; Heo, Jia, & Depaoli, 2024). This range also
includes the median sample size observed in applications of LST theory (Geiser & Lockhart,
2012). For the magnitude of situational influences, we referred to Geiser, Keller, and Lockhart
(2013) and manipulated the occasion specificity coefficients across each time point to be 0, 0.10,
0.25, and 0.40 to reflect no, small, medium, and large situational effects. The analysis models were
the SI-PGM andMI-PGM displayed in Figure 1.We fully crossed all levels of the factors, resulting
in 3 (sample sizes) × 4 (magnitude of situational effects) × 2 (analysis models) = 24 cells. We used
Mplus version 8.7 (Muthén & Muthén, 1998) to generate 1000 replications per cell and fitted
analysis models to datasets using maximum likelihood estimation.

The data-generating model was the MI-PGM in Figure 1(B) which allowed us to manipulate the
magnitude of situational effects. We derived the population values from Depaoli et al. (2023) and
Geiser, Keller, and Lockhart (2013) and have provided them in the Online Supplemental Material1. In
order to conveniently determine parameter values and compute reliabilities, we assumed all indicators
to be tau-parallel and constrained the covariances between growth factors to be zero (Geiser, Keller, &
Lockhart, 2013; Leite, 2007). The true reliability of each indicator in theMI-PGMwas set to be 0.8; for
fitting the SI-PGM, we aggregated the two indicators by obtaining the arithmetic mean of two in-
dicators at eachmeasurement occasion. Following the Spearman-Brown formula (Eisinga et al., 2013),
the reliability of the aggregated indicators in the SI-PGM was 0.889.

The outcome measure was the relative bias for growth parameters and reliability. We computed
relative bias as the difference between the estimated and true values of growth parameters or
reliability, relative to the true values. When the true value was 0, we only calculated the absolute
difference between the estimates and the true values. For the relative bias of reliability, we
computed the bias for each indicator based on its respective true reliability, according to the
analysis model in the simulation conditions.

Results

Growth parameter and reliability estimates for all models were obtained without any estimation
issues across replications. We first report the recovery of growth parameters, followed by that of
reliability for both model types.
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Table 1 displays the simulation results for the relative bias of growth parameters. Across all
conditions, no substantial bias was observed, as all relative bias values fell within the range
of �0.1 to 0.1. While no bias was evident in that regard, the relative bias of growth parameter
variances appeared larger than that of other parameters when the sample size was 100, though it
approached closer to 0 as the sample size increased. These results indicate that the proposed SI-
PGM andMI-PGM successfully recovered the growth parameters, ensuring that piecewise growth
curves were accurately captured when the knot was positioned at the fourth time point.

Table 2 presents the simulation results for the relative bias in recovering true reliability. To aid
interpretation, we bolded values of relative bias exceeding 10%. Overall, both the SI-PGM and
MI-PGM performed similarly in successfully recovering true reliability when situational influ-
ences were absent across all conditions. However, differences emerged in conditions with the
presence of situational influences. Even a small degree of situational effects resulted in substantial
bias in the SI-PGM, such that bias intensified systematically as the magnitude of situational effects
increased. Under large situational influences, the bias underestimated true reliability by ap-
proximately 50%. This consistent pattern across all measured time points highlights the sensitivity
of the SI-PGM to situational effects. In contrast, the MI-PGM exhibited negligible bias and
maintained recovery of true reliability irrespective of the magnitude of situational effects. Relative
biases remained minimal (<1%) across varying degrees of situational influences and time points.

Sample sizes showed negligible influence on the relative bias within both analysis models. For the SI-
PGM, bias patterns related to the magnitude of situational effects remained consistent across different
sample sizes (100, 250, and 500), suggesting no interaction between sample size and situational effects.
Similarly, the MI-PGM’s consistent accuracy was maintained irrespective of different sample sizes. On
the other hand, we observed interactions between the analysis models and the magnitude of situational
effects. Specifically, the impact of situational influences on reliability estimation was pronounced solely
within the SI-PGM. These findings emphasize the advantage of using the MI-PGM when capturing
reliability in the presence of at least a small degree of situational influences.

Discussion

Our goal here was to integrate PGMs into the LST theory framework. This paper serves as an
initial step towards capturing a more sophisticated measurement of trait changes and state
variability in describing piecewise growth curves. SI-PGMs present a straightforward approach
for examining changes that can be primarily attributed to trait effects. However, researchers might
prefer MI-PGMs to incorporate both trait and situational effects and to improve the reliability of
measurements.

The integration we provided holds several avenues for future research. For instance, the LST
theory framework can be extended to more complex PGMs, including models with nonlinear (e.g.,
quadratic and exponential) growth patterns at each stage or multiple knots. For MI-PGMs in
particular, the flexibility of incorporating both trait and state effects opens up further topics. One
potential direction is measurement invariance testing, which can be used to assess whether the
psychometric properties of measurements are consistent over time and hence capture pure state
variability within segmented growth phases. Another topic is on modeling the methods effect to
segregate indicator-specific effects from shared construct variance. Such an application may prove
useful for identifying unique item contributions across separate growth phases.
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