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Abstract
Bayesian piecewise growth models (PGMs) are useful tools to capture nonlinear trends comprised of distinct developmental
phases. An important parameter in Bayesian PGMs is the knot location – the time at which transitions arise between phases.
While researchers can specify knot locations when they are known a priori, a more flexible approach is to estimate knot
locations based on data. The Bayesian estimation of knot locations is largely affected by prior distributions and missing
data; however, little is known about the impact of these two factors in recovering knot placements. In the current article, we
conducted a Monte Carlo simulation study to examine the impact of different prior specifications and the presence of missing
data on the recovery of knot placements in Bayesian PGMs. Simulation results indicated that in small sample sizes, knot
location estimates were dictated by prior distributions. Even with larger sample sizes, the estimates remained sensitive to
informative and inaccurate prior specifications. The presence of missing data complicated the recovery linked to certain priors.
While negative consequences, such as bias in parameter estimates, were caused by a larger amount of missing data, this could
be alleviated by informative and accurate priors. These findings emphasize the critical role and intertwined influence of prior
distributions and missing data in reaching conclusions about changepoints. We present an illustrative example using real data
with missing values to demonstrate the Bayesian estimation of knot locations under realistic scenarios. Recommendations
for applied researchers are discussed.
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Many social and behavioral scientists ask research ques-
tions surrounding how individuals or other research units
change over time. Researchers are then to choose appropri-
ate longitudinal statistical models to answer such questions.
The latent growth model is a versatile statistical modeling
framework that has its roots in structural equation modeling.
Researchers use latent growthmodels to analyze intraindivid-
ual changes over time aswell as interindividual differences in
their patterns of change by postulating relationships between
observed data and a latent continuum (Bollen & Curran,
2006; Grimm et al., 2016; Meredith & Tisak, 1990).
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While many traditional latent growth models assume
overall uninterrupted and smooth growth curves, it is not
uncommon to expect growth trajectories that comprise sep-
arate developmental phases. The latent piecewise growth
model (PGM) is a special type of latent growth model for
analyzing nonlinear dynamic change processes consisting
of distinct growth phases. For instance, Chung et al. (2017)
fitted a PGM to examine a segmented growth trajectory of
self-esteem from childhood to adulthood. In a similar vein,
Wu et al. (2008) utilized a PGM to study how retention in
the first grade influenced a growth shape in children’s math-
ematics and reading achievement. The utility of PGMs in
incorporating segmented growth stages is appealing and thus
has led to wide applications in substantive research (e.g.,
Hardy & Thiels, 2009; Jaggars & Xu, 2016; Lee & Rojew-
ski, 2009; Patrick & Schulenberg, 2011).

However, the estimation of piecewise trends can be chal-
lenged by low convergence rates due to model complexity
(Diallo et al., 2013; Kohli et al., 2015). The Bayesian estima-
tion framework can be eminently suited to improve accuracy
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in estimating growth models by incorporating prior knowl-
edge (Depaoli & Boyajian, 2014; Depaoli, 2013; Depaoli
& Boyajian, 2014; Smid et al., 2020; Serang et al., 2015),
even when the sample size is small (McNeish, 2016b). A
perusal of the literature indicates that the Bayesian approach
has been applied to estimate PGMs, particularly models with
mixture components (Lock et al., 2018; Kohli et al., 2015).
In addition, Peralta et al. (2022); Wang and McArdle (2008)
implemented the Bayesian approach to piecewise mixed-
effects modeling, which is based on a multilevel modeling
framework. Simulation studies have been used to examine
the performance of these Bayesian approaches. Kohli et al.
(2015) demonstrated the advantages of Bayesian estimation
in accurately recovering parameters of piecewise growth
mixture models, while also highlighting its computational
feasibility. Similarly, results fromWang andMcArdle (2008)
suggested that Bayesianmethods produced reliable estimates
andwere successful in recovering parameter values for piece-
wise mixed-effects models. These studies underscore the
potential benefits of the Bayesian approach to PGMs, paving
the way for future methodological explorations.

A parameter that deserves attention in PGMs is the knot
location – the time at which transitions arise between stages.
Importantly, placing knots is a major issue in piecewise
growth modeling. Researchers can specify single or multi-
ple knots when their locations are known a priori based on
theories or research designs to mark substantively important
moments (Flora, 2008; Marvin et al., 2023; Sterba, 2014).
More common scenarios are situations in which knot loca-
tions are unknown when researchers have limited knowledge
about them. Under these scenarios, the misspecification of
knot locations can backfire and lead to misleading research
conclusions (Depaoli et al., 2023; Heo et al., 2024; Leite &
Stapleton, 2011;Ning&Luo, 2017). An alternative approach
is to freely estimate knot locations based on collected data
(Harring et al., 2006; Kohli & Harring, 2013; Kwok et al.,
2010; Ning & Luo, 2017). For example, Kohli and Sullivan
(2019) fitted piecewise growth mixture models to estimate
locations of knots in a trajectory of mathematics achieve-
ments from kindergarten to the eighth grade. While locating
knots should be theoretically justified (Kwok et al., 2010;
Marcoulides, 2018), it is a viable option to estimate the turn-
ing points and optimally represent a piecewise functional
form of change (Kwok et al., 2010; Ning & Luo, 2017).

One important feature in Bayesian inference is a prior
distribution: The information from prior distributions is
combined with the likelihood of data to form posterior dis-
tributions. This characteristic implies that different prior
specifications can influence study results, which have been
extensively studied by previous literature in latent growth
modeling (Depaoli, 2013, 2014; Depaoli & Boyajian, 2014;

McNeish, 2016a; Winter & Depaoli, 2022). As members of
the latent growth model family, PGMs are anticipated to pro-
duce varied outcomes, contingent on the selection of priors,
especially the prior distributions for knot locations. Thus
far, extant studies have focused on prior conditions within
specific contexts under complete data scenarios, leaving the
examination of a comprehensive range of prior specifications
underexplored. Lock et al. (2018) considered specifying pri-
ors for the hyperparameters of truncated normal distributions
in estimating multiple random knot locations for each indi-
vidual. Specifically, they used noninformative uniform prior
distributions for themean hyperparameters of knot locations.
For the variance hyperparameters, they considered uniform
priors as well as scaled or unscaled half-Cauchy priors, as
demonstrated in the supplement from Lock et al. (2018).
Another study byKohli et al. (2015) estimated a knot location
based on a noninformative uniform prior distribution.Within
the context of piecewise mixed-effects modeling, Wang and
McArdle (2008) estimated knot locations using a noninfor-
mative multivariate normal prior. Peralta et al. (2022), on the
other hand, used a truncated normal distribution as a prior
to estimate knot locations. Additionally, they conducted a
prior sensitivity analysis. However, a uniform prior for knot
locations was utilized only in a specific simulation scenario.

Furthermore, missing data are a ubiquitous challenge in
longitudinal research, and studies using PGMs suffer from
missing data (e.g., Hu et al., 2020; Lee & Rojewski, 2009;
Li et al., 2001). The presence of missing data can cause
bias in parameter estimation and damage the generalizability
of the sample (Graham, 2009; Shi et al., 2021). In partic-
ular, when missing data mechanisms are not ignorable or
missing data handling methods do not meet the assump-
tions that corresponding methods necessitate in the model
fitting step, bias can be introduced. Encountering missing
data in longitudinal research can be attributable to multiple
reasons, particularly attrition of participants at the midway
point (Nicholson et al., 2017; Twisk & de Vente, 2002). The
issue of participant attrition leading to a limited number of
observations poses a critical challenge in PGMs, potentially
causing biased estimates of knot locations. Bayesian esti-
mation addresses missing data via data augmentation, which
iteratively samples missing values from conditional distri-
butions (Lee, 2007; Tanner & Wong, 1987). The process of
Bayesian estimation via data augmentation has been demon-
strated in estimatingmodelswithmissingdata under complex
data structures or different missing data mechanisms (e.g.,
Lee & Song, 2004; Lee & Tang, 2006; Song & Lee, 2002).
However, a paucity of research has examined the degree
to which Bayesian estimation, in the presence of missing
data, can successfully recover knot placements. To accu-
rately detect changepoints and draw meaningful substantive
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conclusions, it is critical to ascertain the effectiveness of
Bayesian PGMs in successfully retrieving the true knot loca-
tions, particularly in situations involving missing data.

Novel contributions

This study extends findings and incorporates insights from
previous research, introducing novel contributions in several
key areas. First, we build upon Wang and McArdle’s (2008)
suggestion of exploring the impact of informative prior distri-
butions in estimating knot locations.As such,we consider the
specification of prior distributions using not only uniformpri-
ors (e.g., Kohli et al., 2015) but also truncated normal priors
(e.g., Peralta et al., Peralta et al.) to vary levels of informa-
tiveness and accuracy under extensive simulation conditions.
Importantly, we acknowledge the previous contributions of
Lock et al. (2018), who specified hyperpriors for both the
mean and variance hyperparameters in estimating multiple
randomknot locations for each individual. Their use of scaled
or unscaled half-Cauchy priors for the variance hyperparam-
eter, instead of uniform priors, highlighted the benefits of
informative priors for model convergence and reducing bias.
However, our approach differs by evaluating the sensitivity of
estimates under distinct and separate prior settings, assigning
values to the hyperparameters that more closely mirror the
scenarios encountered in applied piecewise growth model-
ing research. By doing so, our study evaluates distinct prior
settings in various forms across simulation and illustrative
studies.

Second, we emphasize, in line with Depaoli et al. (2023),
the importance of investigating missing data in Bayesian
piecewise growth modeling. Despite its prevalence, the
impact of missing data on the estimation of knot locations
has been largely overlooked in previous studies (e.g., Kohli
et al., 2015; Lock et al., 2018; Peralta et al., 2022; Wang
& McArdle, 2008), representing a critical gap in the litera-
ture. Our study addresses this gap and provides a significant
contribution to understanding how missing data can affect
the robustness and accuracy of knot location estimates in
Bayesian PGMs. We consider different amounts and pat-
terns of missing data in our simulation design (e.g., Heo et
al., 2024), which reflects a realistic amount and pattern of
missing data as will be delineated in our illustrative exam-
ple. We particularly consider a missing at random (MAR)
mechanism since modern missing data handling techniques
assumeMAR (vanBuuren, 2018), andMARhas been a com-
mon assumption in bothmethodological and applied research
with latent growth modeling (e.g., Depaoli et al., 2023; Heo
et al., 2024; Shi et al., 2021; Winter & Depaoli, 2022).

Third, our work is grounded within a latent growth
‘curve’modeling context that is non-mixture and non-mixed-

effects1. We have chosen this simple yet prevalent modeling
framework to focus on an understudied aspect: how miss-
ing data influence the estimation of knot locations. Although
it might be more realistic to extend the framework into
more complex scenarios, such as mixtures, isolating the
effects of missing data on knot locations before introduc-
ing additional complexities sets a baseline for research with
more advanced models. As a result, our study serves as
a foundational step in addressing missing data issues in a
simpler PGM. This approach complements existing stud-
ies (Kohli et al., 2015; Lock et al., 2018; Peralta et al.,
2022; Wang & McArdle, 2008), which primarily focused
on model parameters, including knot locations, within mix-
ture or mixed-effects frameworks but did not systematically
examine how missing data might affect parameter recov-
ery. Hence, by systematically investigating knot placements
within the piecewise growth modeling framework that is
widely applied in both methodological and applied works
(see, e.g., Marvin et al., 2023), our study advances the under-
standing of how Bayesian PGMs perform when missing data
exist. We believe the current investigation contributes to a
comprehensive overview of knot location recovery, comple-
ments existing works, and informs subsequent extensions to
more complex settings.

Goals and organization of the current study

While the placement of knots in Bayesian PGMs holds sub-
stantive importance, current methodological research has
rarely focused on two influential factors in the estimation
of knot locations – prior distributions and missing data. The
current study aims to fill this gap by estimating knot loca-
tions under various conditions. The objective of this paper is
to examine the impact of different prior specifications and the
presence of missing data on the recovery of knot placements
in Bayesian PGMs via simulation, and to demonstrate practi-
cal applications through illustrative examples using real data.

We begin by explaining the Bayesian estimation frame-
work in the context of PGMs. In the subsequent sections, we
present the key literature on specifying prior distributions
for knot locations and estimating latent growth models in
the presence of missing data. This information provides the
background and context for the current investigation. Next,
we detail the design of the simulation study, which evaluates
the impact of different prior distributions and the presence of
missing data on the recovery of knot placements. We provide
details on the conditions and other settings for conducting the
simulation study, and then we present the results. We further

1 For the sake of coherence and simplicity, it is assumed that unless
otherwise stated, piecewise growthmodeling refers to piecewise growth
curve modeling that has neither mixture nor mixed-effects components.
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present an illustrative example by estimating knot locations
in real data containing missing values. We conclude with a
discussion of the keyfindings, provide advice for researchers,
and suggest directions for future research.

Bayesian piecewise growthmodeling

The piecewise growth modeling framework introduces knot
placements as additional parameters for estimating stage-
specific growth rates. With a single knot, longitudinal
changes are segmented into two distinct pieces. Adding mul-
tiple knots extends the division in a way that more than two
developmental stages are described. As a consequence, knots
increase the model complexity tied to the identification of
PGMs (Bollen & Curran, 2006; Flora, 2008). In addition,
the estimation of nonlinear growth trends, such as piecewise
growth curves, may face issues such as nonconvergence or
convergence on inadmissible parameter solutions, particu-
larly with small sample sizes (Diallo et al., 2013). To address
these methodological challenges, the Bayesian approach to
piecewise growthmodeling canbe an alternative.By incorpo-
rating prior knowledge into statistical inference, theBayesian
estimation framework mitigates problems related to non-
converged or inadmissible parameter estimates (Can et al.,
2015; Kohli et al., 2015). The Bayesian scheme can aid
in accurately estimating parameters of growth models with
nonlinear trends, including piecewise growth trajectories
(Kohli et al., 2015; Wang & McArdle, 2008) with mixture
components or multiple knots (Lock et al., 2018). Addi-
tional benefits of the Bayesian methods include efficiently
managing computational challenges associated with large
parameter spaces and the inherent nonlinearity of the models
(Kohli et al., 2015).

The Bayesian approach is applicable to PGMs with vary-
ing degrees of complexity. The simplest form of a PGM is
the linear-linear model, which comprises two separate lin-
ear segments, connected by a single knot. This basic form of
PGM has been widely studied in the methodological litera-
ture (Depaoli et al., 2023; Heo et al., 2024; Kohli & Harring,
2013; Kohli et al., 2015; Kwok et al., 2010; Leite & Staple-
ton, 2011) with many applications in applied research (Hu et
al., 2020; Jaggars & Xu, 2016; Kohli & Sullivan, 2019). Due
to the broad relevance and applicability of the linear-linear
PGM with a single knot, we have chosen this PGM as the
focal model in our current study. However, it is important to
note that this simple PGM can be extended into more com-
plex formats, including models with multiple knot locations,
disjointed knots, individually varying knots, and others (e.g.,
Chung et al., 2017; Cudeck & Codd, 2012; Flora, 2008; Har-
ring et al., 2021; Heo et al., 2024; Kroese et al., 2014; Lock et
al., 2018). Next, we provide a brief overview of the Bayesian
estimation framework for linear-linear PGMswith one single
knot.

Likelihoodmodel

The likelihood model for a PGM can be defined within
a structural equation modeling framework (Grimm et al.,
2016). The common factor model and the latent factor scores
for the PGM can be expressed as follows:

yi = �ηi + εi with εi ∼ N (0,� y),

ηi = α + ζ i with ζ i ∼ N (0,�η).
(1)

In Eq. (1), yi is a J × 1 vector that contains repeated out-
come measures for individual i where J equals the number
of repeated measurements, � refers to a J × M matrix of
factor loadings, ηi is an M × 1 vector of growth factors for
individual i , εi refers to a J × 1 vector of error terms that
cannot be accounted for by the trajectory for individual i ,� y

refers to a J -dimensional covariance matrix, α is an M × 1
vector that stores growth factor means, ζ i is an M ×1 vector
of deviations from the mean for individual i , and �η is an
M-dimensional covariance matrix.

When formulating PGMs, the dimensions and elements
of the � matrix are adjusted to specify piecewise growth tra-
jectories and knot locations. Specifically, the number of rows
in � corresponds to the number of repeated measurements
J , while the number of columns corresponds to the growth
factors M , and elements of the matrix are adjusted to locate
knots. For a linear-linear PGM, at least five time points of
repeated measurements are required to identify the model
(Bollen & Curran, 2006; Flora, 2008).

Suppose we have data from seven equidistant time points,
and we place a knot at the fourth time point. In this scenario,
the�matrix is a 7×3matrix becausewe have seven repeated
measurements and three growth factors (i.e., latent intercept,
first latent linear slope, and second latent linear slope). The
first column consists of “1”s because the intercept remains
constant over time. The second and third columns represent
the hypothesizedpatterns of the piecewise growth curve.Typ-
ically, for slope factors, the value at the first time point is set
to 0. As a result, the knot location at the fourth time point is
coded as 3. Thus, the � matrix is specified as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 2 0
1 3 0
1 3 1
1 3 2
1 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The second column holds the loadings of the first linear
slope factor and captures the rate of change in measurements
leading up to the knot location at the fourth time point. The
third column defines the loadings of the second linear slope
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factor and captures the rate of change in measurements fol-
lowing the knot location. Note that the pre-knot slope does
not affect measurements after the knot locations, and simi-
larly, the post-knot slope does not influence measurements
before the knot location. A more general form of the j th row
in the � matrix can be expressed in the following manner
(Grimm et al., 2016):

� = [1 min(t j , γ ) max(t j − γ, 0)], (3)

where t j represents the time metric associated with occasion
j with 1 ≤ j ≤ J (e.g., t1 equals 0 because the first time
point is coded as 0), γ is the knot location (e.g., γ equals
3 when the fourth time point is the true knot location), and
the dimension of the � matrix is J × 3. Equation (3) is a
generalized expression of a linear-linear PGM with a single
knot. To formulate PGMswith nonlinear slopes or more than
one knot location, readers are referred toGrimmet al. (2016);
Harring et al. (2021).

Prior distributions

Specifying prior distributions is essential for implementing
Bayesian inference in PGMs.We consider four sets of param-
eters with their respective prior specifications. The first set
of parameters to consider is the latent factor means. We typi-
cally assume that the means of growth factors follow normal
distributions:

α ∼ N (μα, σ 2
α ),

where α is the mean of growth factors (i.e., latent means and
slope factors), μα is the mean hyperparameter that indicates
the center of this prior distribution, and σ 2

α is the variance
hyperparameter that determines the informativeness of this
prior distribution.

The second parameter is the factor covariance matrix �η.
It is common to use the inverse Wishart distribution as the
prior for this parameter:

�η ∼ IW(�, ν),

where � is a positive definite matrix, and ν represents the
degrees of freedom that determine the informativeness of this
prior.

The third set of parameters is the variance of error terms
in � y. Typically, we map an inverse gamma distribution to
each element of the � y matrix:

σ 2
εi j

∼ IG(a, b),

where εi j is the error termof individual i at time point j , anda
and b are the shape and scale hyperparameters, respectively.

The fourth and last parameter is the knot location γ . We
introduce two options for prior distributions on γ . One option
is to use the uniform distribution to indicate a diffuse prior
setting over the knot location:

γ ∼ U(min(t j ),max(t j )),

wheremin(t j ) andmax(t j ) are the initial and last time points,
respectively. Specifying uniform prior distribution indicates
that all values for γ are equally likely, making this prior spec-
ification noninformative. The other option is to implement a
truncated normal distribution to leverage different degrees of
informativeness and accuracy with respect to knot location:

γ ∼ N (μγ , σ 2
γ ) T (min(t j ),max(t j )),

where μγ defines the center of this prior distribution, σ 2
γ

defines the informativeness of the prior distribution via the
distribution’s variance, and T (min(t j ),max(t j )) indicates
that this normal prior distribution is truncated, ranging from
the initial to the last time points.

Posterior inference

Bayesian posterior inference combines the likelihood and the
prior distribution to update prior knowledge and obtain the
posterior distribution. This updating process is based on the
tenet called Bayes theorem:

p(θ | yi ) = p( yi |θ)p(θ)

p( yi )
, (4)

where θ is a vector of parameters. InEq. (4), the prior distribu-
tion, p(θ), that reflects our prior knowledge about parameters
is updated to the posterior distribution, p(θ | yi ), that reflects
our posterior knowledge about parameters, by incorporating
the likelihood, p( yi |θ), that represents the information from
the sample data. The denominator on the right side of the
equation, p( yi ), is the marginal likelihood that serves as a
normalizing constant in the Bayesian estimation framework.

The analytic derivation of the posterior distribution can
be difficult. An alternative approach is to simulate draws
from the posterior distribution to approximate it by employ-
ing an iterative sampling scheme called a Markov chain
Monte Carlo (MCMC) algorithm (Gamerman & Lopes,
2006; Robert &Casella, 2004). This study uses the R rjags
package that integrates JAGS into the R environment, and
JAGS uses the Gibbs sampler as anMCMC algorithm (Plum-
mer et al., 2003; Plummer, 2016). The Gibbs sampler draws
posterior samples from conditional distributions in an iter-
ative fashion (Geman & Geman, 1984). Suppose that the
parameter vector, θ , is comprised of p parameters: θ (s) =
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(θ
(s)
1 , θ

(s)
2 , . . . , θ

(s)
p ), where the superscript within the paren-

thesis refers to the sth = 1, 2, . . . , S iteration. To implement
the Gibbs sampler, a set of initial values of each parameter,
θ (0), is required, which can be defined by researchers or ran-
domly generated by the package. A general procedure of the
Gibbs sampling is described as follows:

θ
(s+1)
1 ∼ p(θ1|θ(s)

2 , θ
(s)
3 , . . . , θ (s)

p , yi ),

θ
(s+1)
2 ∼ p(θ2|θ(s+1)

1 , θ
(s)
3 , . . . , θ (s)

p , yi ),

θ
(s+1)
3 ∼ p(θ3|θ(s+1)

1 , θ
(s+1)
2 , . . . , θ (s)

p , yi ),

...

θ (s+1)
p ∼ p(θp|θ(s+1)

1 , θ
(s+1)
2 , . . . , θ

(s+1)
p−1 , yi ),

(5)

where at each (s + 1)th iteration, posterior samples are
alternately drawn from the conditional distribution using
parameter values at the sth iteration. A collection of pos-
terior samples is referred to as a Markov chain, which
can be denoted as {θ (1), θ (2), . . . , θ (s), . . . , θ (S−1), θ (S)}.
However, samples drawn at the initial iteration such as
{θ (1), θ (2), θ (3), . . .} are not stable to represent the target pos-
terior distribution; hence, an initial set of posterior samples is
discarded from a chain. These discarded samples are referred
to as burn-in or warm-up samples. The remaining posterior
samples are used for subsequent analysis.

In practice, researchers may run multiple Markov chains
in a parallel manner, using different sets of initial values.
After the burn-in samples are discarded, the posterior sam-
ples from these chains should, in principle, converge and
fully approximate the target posterior distribution. It is thus
important to evaluate whether chains have converged using
convergence diagnostics. A common convergence diagnostic
in previous literature in Bayesian piecewise growth model-
ing (e.g., Depaoli et al., 2023; Heo et al., 2024; Lock et al.,
2018) is the R̂ statistic. It measures the potential scale reduc-
tion of parameter estimates when multiple chains are used in
the MCMC process and compares the within-chain variabil-
ity to between-chain variability. When multiple chains are
converged, the R̂ statistics are close to 1. In addition, visual
tools such as trace plots are also used to evaluate convergence.
In trace plots, convergence is evidenced by multiple chains
that are mixed and thus indistinguishable from each other.
After determining chain convergence, the posterior distribu-
tions are summarized by calculating summary statistics such
as the posterior mean, standard deviation, and 95% credible
intervals.

Bayesian inference with missing data

In Bayesian inference with missing data, the observed data
are augmented with missing data, which are treated as
unknown parameters – a concept referred to as data aug-

mentation (Tanner & Wong, 1987). In this case, the missing
data are naturally filled in. To illustrate the data augmentation
method, a brief description of the three missing data mecha-
nisms is necessary (Little&Rubin, 2002; Schafer&Graham,
2002; van Buuren, 2018). First, data are missing completely
at random (MCAR) when the probability of being missing is
independent of both observed andmissing values of variables
in the dataset. Second, data are missing at random (MAR)
when the probability of being missing depends on observed
values but not on missing values. Lastly, data are said to
be missing not at random (MNAR) when the probability of
beingmissing is dependent onmissing values, even after con-
trolling for observed values. MNAR data are referred to as
nonignorable missingness and can cause bias in parameter
estimates (Graham, 2009; Kristman et al., 2004).

In Bayesian inference via data augmentation, the Gibbs
sampling in Eq. (5) is expanded to sample not only the
unknown parameter values but missing values from the
conditional distribution. Therefore, the missing data are iter-
atively sampled at each iteration s from their conditional
distributions. The complete likelihood is subsequently com-
bined with the prior distribution to derive the posterior
distribution in Eq. (4). Readers can consult Daniels and
Hogan (2008); Gelman et al. (2013); Lee (2007) for an exten-
sive exposition of data augmentation in Bayesian posterior
inference under three different missing data mechanisms
(Little & Rubin, 2002; Rubin, 1976; Schafer & Graham,
2002; van Buuren, 2018).

Specifying prior distributions for knot
placement

Recovering knot locations is crucial for drawing conclu-
sions about transitions in longitudinal trajectories. As prior
distributions are a key factor that influences the Bayesian
estimation of knot locations, specifying priors is an essential
task. Previous approaches to specifying prior distributions for
knot locations have focused on specific prior settings under
complete data situations, primarily within the frameworks of
piecewise growth mixture modeling and mixed-effects mod-
eling. We briefly peruse these studies with an emphasis on
prior specifications.

Lock et al. (2018) estimated multiple random knot loca-
tions for each individual in two-class piecewise growth
mixture models with linear trajectories. To specify priors
that are robust to the scales of variables and generally applica-
ble, they implemented hyperpriors for the mean and variance
hyperparameters of truncated normal distributions. For the
mean hyperparameter, they used the uniformdistribution. For
the variance hyperparameter, they used the uniform distribu-
tion but also compared it with scaled or unscaled half-Cauchy
priors in the supplement. Given the nature of their work,
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where multiple random knot locations were present for indi-
viduals, the hyperpriors were set not to cover the full range
of time points to circumvent model identifiability issues at
multiple boundaries. The results generally indicated success-
ful recovery of true knot locations. However, in conditions
with lower class proportions for one class compared with the
other class, the estimates were slightly overestimated.

A simpler model with single knots was examined in Kohli
et al. (2015). Their simulation study used a two-class linear-
linear piecewise growth mixture model as the population
model. They specified a uniform prior distribution for knot
locations across each latent class where the prior covered all
time points. The results overall indicated a negligible level of
average bias in the knot location estimates. However, under
specific simulation conditions where the knot locations for
both classes were close to each other, convergence rates were
found to be poor.

We now turn to a study by Peralta et al. (2022), who uti-
lized a bivariate linear-linear piecewisemixed-effects model.
For the priors on knot locations, they specified a truncated
normal distribution for each outcome variable, with themean
hyperparameter set at the midpoint of the time scale and
the variance hyperparameter fixed at a quarter of the time
scale. Here, the normal distribution was truncated between
the minimum and maximum time points to ensure that plau-
sible knot location values fell within the time frame. The
study reported successful parameter recovery, including knot
locations across most of the conditions. However, under con-
ditions of medium sample size and low association between
the two outcome variables, it faced nonconvergence issues
and observed relative bias exceeding 10% in the variance
estimates of knot locations.

In a further analysis, Peralta et al. (2022) conducted a
prior sensitivity analysis under one specific simulation con-
dition where the sample size was small, the association of
error terms was medium, and the association between the
bivariate variables was high. An alternative prior setting for
knot locations was a uniform distribution. They found that
parameter estimates were comparable to those obtained with
the truncated normal prior, albeit with longer computation
times.

We could review that previous studies focused on single
specific prior settings for estimating knot locations or consid-
ered an alternative set of priors only for a limited simulation
scenario, and the models examined were piecewise growth
mixture models or piecewise mixed-effects models. How-
ever, our examination explores various prior specifications
across a wide range of simulation conditions within the con-
text of non-mixture PGMs and is thus comprehensive. Yet,
missing data is another consideration in estimating PGMs,
and we peruse literature relevant to our investigation in the
next section.

Estimating growthmodels withmissing data

Attrition can create problems in producing accurate param-
eter estimates and obtaining samples that fully represent the
true population (Graham, 2009). As a result, it is important to
understand the impact of attrition on estimating PGMs. There
exists a notable gap in the current literature regarding the
exploration of Bayesian parameter estimation with missing
data in PGMs. While one study has focused on model eval-
uation of Bayesian PGMs under attrition scenarios (Heo et
al., 2024), this specific aspect remains unexplored. Nonethe-
less, alternative approaches for handling missing data have
been investigated within the context of maximum likelihood
estimation in linear latent growth models. We outline and
discuss their respective findings as follows.

Shi et al. (2021) examined the impact of attrition in the
context of small sample sizes with non-normally distributed
data. They generated datasets with both MCAR and MAR
mechanisms and imposed 10%, 20%, or 30% of missing-
ness levels.When the data wereMCAR, parameter estimates
closely approximated the true values, regardless of the other
simulation conditions. When the data were MAR, however,
biased parameter estimates were obtained when the propor-
tion of missing data was 30%. The degree of bias was larger
for the variances and covariances of the growth factors than
for the means of the growth factors.

Bias resulting from attrition was also demonstrated in
Nicholson et al. (2017). They considered MCAR, MAR,
MNAR, and a combination of the three mechanisms, with
25% as the proportion of missing data. In addition, param-
eter recovery was evaluated under different missing data
handling techniques: listwise deletion, full information max-
imum likelihood (FIML) with no auxiliary variable, FIML
with an unrelated auxiliary variable, and FIMLwith a related
auxiliary variable. Their findings revealed that, except for the
MCAR condition and when a related auxiliary variable was
included in the analysismodel, biaswas observed in the latent
mean estimates of the slope factor. Including a related aux-
iliary variable mitigated the bias even for the MNAR and
combination mechanisms conditions. The inclusion of the
unrelated auxiliary variable did not worsen the estimation
accuracy compared with conditions where no auxiliary vari-
able was used. Among the four missing data mechanisms,
the largest bias was observed under the MNAR data.

Although the two previous studies were not based on
Bayesian estimation, and their models were not PGMs,
they highlighted the adverse impact of attrition on param-
eter estimation under various missing data mechanisms. Our
investigation focused on the Bayesian estimation of knot
locations in the presence of MAR data to better understand
the recovery of knot locations. Details of the simulation setup
are provided next.
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Simulation design

We carried out a Monte Carlo simulation study to evaluate
how different prior specifications and the presence of miss-
ing data impact the recovery of knot locations in Bayesian
PGMs. We designed the simulation study, where all the lev-
els of the three following factors were fully crossed: sample
sizes (three levels), missing data (seven levels), and prior
specifications (seven levels). This design resulted in a total
of 147 cells. Next, we provide a detailed explanation of
each design factor considered in the simulation setup. We
also describe the population model, settings for Bayesian
estimation, and outcome measures. Reproducible materials,
including simulated data and annotated R code and JAGS
syntax, are available as online supplementary materials at
https://osf.io/j46bf/.

Populationmodel

The population model for the true data-generating mecha-
nismwas a linear-linear PGMwith seven equidistant repeated
outcome measures. The true knot location was set at the
fourth time point (see Eq. (2)). Figure 1 presents a path
diagram for the population model. The population param-
eter values were determined based on Depaoli et al. (2023);
Heo et al. (2024), and this choice allowed us to examine the
model’s sensitivity to detecting knot locations under missing

data conditions while maintaining its generalizability (Kwok
et al., 2010; Ning & Luo, 2017). The mean of the second lin-
ear slope after the first linear slope reflects a large change in
terms of standardized effect size computation (Cohen, 2002;
Kwok et al., 2010; Raudenbush & Liu, 2001).

Sample size

Sample size plays an important role in Bayesian inference.
For instance, observed data from small sample sizes convey
relatively less information, and in turn, this leads to a stronger
influence of prior distributions on posterior inference. Hence,
we considered levels of the sample size condition to assess
the relative strength of the priors in relation to sample sizes
that are routinely encountered in applied research, as well as
those examined in previous methodological studies (Depaoli
et al., 2023; Heo et al., 2024; Kohli et al., 2015; Wang &
McArdle, 2008; Winter & Depaoli, 2022). To this end, we
considered three levels of the sample size condition: n =
50 (representing a small sample size), 150 (medium sample
size), and 500 (large sample size).

Missing data

For the missing data condition, we referred to Heo et al.
(2024) to manipulate the pattern and amount of missing data.
For the missing data pattern, we considered attrition patterns

Fig. 1 A path diagram for the population model
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in which the presence ofmissing values at a specific occasion
ensured missing values in subsequent occasions (Nicholson
et al., 2017; Twisk & de Vente, 2002; Winter & Depaoli,
2022). To cover different attrition patterns, we used linear
and quadratic functions to model the probability of attrition
across seven repeated measurements (Ortega-Azurduy et al.,
2008). A linear function was used to compute a constant
increase in missing data proportion across repeated mea-
surements. On the other hand, a quadratic function was used
to provide either an accelerated increase (i.e., missing val-
ues concentrated at the end of the study) or a decelerated
increase (i.e., missing values concentrated at the beginning
of the study) in missing data proportion across repeated mea-
surements. For the amount of missing data, we manipulated
it based on the proportion of missing values at the last (i.e.,
seventh) time point. The specific proportions of missing val-
ues at the last time point were set at 0%, 30%, or 70% to
align with typical levels of missing data observed in longi-
tudinal research (Gustavson et al., 2012; Wu et al., 2016).
These considerations resulted in seven levels of the missing
data condition:

• No missing data (Complete).
• Decelerated increase of missing values with 30% in the
end (Concen-S-30%).

• Constant increase of missing values with 30% in the end
(Constant-30%).

• Accelerated increase of missing values with 30% in the
end (Concen-E-30%).

• Decelerated increase of missing values with 70% in the
end (Concen-S-70%).

• Constant increase of missing values with 70% in the end
(Constant-70%).

• Accelerated increase of missing values with 70% in the
end (Concen-E-70%).

Missing data generation

We generated MAR data by predicting the missingness on
indicators from the second to the seventh time points through
logistic regression (Agresti, 2012):

log
p(yi j is missing)

1 − p(yi j is missing)
= b0, j + b1zi1. (6)

In Eq. (6), zi1 is a standardized yi1, b0, j is the intercept at
occasion j , and b1 is the regression weight. The probabil-
ity of missingness from yi2 to yi7 was determined by the
standardized score of the first indicator, thus satisfying the
MAR assumption. We fixed the regression weight b1 at 1.48
to establish a strong association between the cause of miss-
ingness and the probability of data beingmissed (e.g., Enders
&Mansolf, 2018). To manipulate the proportions of missing

data, we varied the intercept b0, j . Specifically, the proportion
of missing data at each time point (t j = 0, 1, . . . , 6) was cal-
culated using the following equations (see Fig. 3 for missing
data patterns under these equations):

• For Concen-S-30%, −5

6
(t j − 6)2 + 30.

• For Constant-30%, 5t j .

• For Concen-E-30%,
5

6
t2j .

• For Concen-S-70%, −35

18
(t j − 6)2 + 70.

• For Constant-70%,
35

3
t j .

• For Concen-E-70%,
35

18
t2j .

Using the b1 value of 1.48 and the b0, j values at each occa-
sion, we inserted zi1 into the logistic regression model to
obtain a vector of probabilities. These probabilities were
subsequently used as success probabilities of a binomial dis-
tribution for generating missing data indicators. Next, we
removed the existing values when the missing data indica-
tors were 1, and otherwise, the existing values were retained.
We repeated this process for each level of the missing data
condition.

Prior specification

We systematically manipulated the prior specification condi-
tion for knot locations using both a uniform distribution and
a truncated normal distribution, which resulted in seven lev-
els. All these levels are described in Fig. 2. The justifications
for these specifications are provided below:

• γ ∼ U(0, 6). This uniform distribution is a diffuse prior
distribution (DIF), in which any values for knot locations
from the first time point (coded as 0) to the seventh time
point (coded as 6) are equally likely.

• γ ∼ N (3, 0.146) T (0, 6). This truncated normal distri-
bution is an informative prior distribution located at the
true knot location, which is at the fourth occasion (coded
as 3).We call this prior specification the informative prior
at the true knot location (I-ATK). The variance of 0.146
is determined in such a way that informative prior distri-
butions overlap with each other by 10%.

• γ ∼ N (3, 0.730) T (0, 6). This truncated normal distri-
bution is a weakly informative prior distribution located
at the true knot location. We call this prior specifi-
cation the weakly informative prior at the true knot
location (WI-ATK). The variance of 0.730 is determined
by multiplying 5 by the variance of the informative prior
distribution.
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• γ ∼ N (1.5, 0.146) T (0, 6). This truncated normal
distribution is an informative prior distribution that is
incorrectly located before the true knot location, which is
at the time point 2.5 (coded as 1.5).We followed the Lock
et al.’s (2018) approach of using themidpoint tomisplace
the mean hyperparameter of knot locations. Hence, the
incorrect location at the time point 2.5 is determined as
a midpoint between the first time point and the true loca-
tion. We call this prior specification the informative prior
at the pre-knot location (I-PRK).

• γ ∼ N (1.5, 0.730) T (0, 6). This truncated normal dis-
tribution is a weakly informative prior distribution that is
incorrectly located before the true knot location, which is
at the time point 2.5. We call this prior specification the
weakly informative prior at the pre-knot location (WI-
PRK).

• γ ∼ N (4.5, 0.146) T (0, 6). This truncated normal
distribution is an informative prior distribution that is
incorrectly located after the true knot location, which is
at the time point 5.5 (coded as 4.5). This incorrect loca-
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Fig. 3 Missing data patterns
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tion is determined as amidpoint between the true location
and the last time point.We call this prior specification the
informative prior at the post-knot location (I-PSK).

• γ ∼ N (4.5, 0.730) T (0, 6). This truncated normal dis-
tribution is a weakly informative prior distribution that is
incorrectly located after the true knot location, which is
at the time point 5.5. We call this prior specification the
weakly informative prior at the post-knot location (WI-
PSK).

For other parameters than knot locations, we referred to
Kohli et al. (2015) and specified diffuse prior distributions in
the following way:

• For the mean of the growth factors, the following normal
prior distribution was used: N (0, 106).

• For the covariance matrix of the growth factors, the
following inverse Wishart prior distribution was used:
IW(I3×3, 3), where I3×3 is a 3-dimensional identity
matrix.

• For the residual variances, the following inverse gamma
prior distribution was used: IG(0.001, 0.001).

Bayesian estimation

We generated 500 replications per cell using the R lavaan
package (Rosseel, 2012) and used the rjags package in
R (Plummer, 2016) to estimate parameters via the Bayesian
estimation framework. For an MCMC algorithm, the Gibbs
sampler was implemented with four chains each consisting
of 25,000 iterations after discarding the first 5,000 iterations
as the burn-in period. We thinned the chain by only retain-
ing every 10th sample to reduce high autocorrelations. We
assessed chain convergence using R̂ statistics (Vehtari et al.,
2021), with a cutoff value lower than 1.12.

Outcomemeasures

We used three numerical measures and one visual method
to evaluate the recovery of knot placements. The numerical
measures included coverage rate, average bias, and rootmean
squared error (RMSE). For the visual method, we created
ridgeline plots to display distributions of posterior means for
knot locations. Details of the way each numerical measure
was calculated are explained:

2 While this cutoff value is common in methodological research, we
found that different cutoff values have been used in Bayesian piece-
wise modeling literature for assessing convergence. In light of this, we
additionally conducted a sensitivity analysis of convergence rates under
different cutoff values of R̂ statistics and reviewed convergence criteria
in Appendix A.

• Coverage rate: proportions of converged replications in
which a 95% credible interval from each converged repli-
cation contains the true parameter value of knot location:

Coverage rate = 1

Rc

Rc∑
s=1

I (θγ ∈ [Ls,Us]),

where Rc is the number of converged replications, θγ is
the true parameter value of knot location (i.e., θγ = 3 as
the fourth time point is the knot location in the population
model), I (·) is a 95% credible interval, and Ls and Us

are respectively a lower and an upper limit of an interval
at the sth replication.

• Average bias: the mean of difference between parameter
estimates of the knot location and its true parameter value
over the converged replications:

Average bias = 1

Rc

Rc∑
s=1

(θ̂γs − θγ ),

where θ̂γs is a parameter estimate of the knot location at
the sth replication.

• RMSE: the square root of the mean of the squared differ-
ences between parameter estimates of the knot location
and its true value over the converged replications:

RMSE =
√∑Rc

s=1(θ̂γs − θγ )2

Rc
.

Simulation results

On average, 70.27% of replications had R̂ values for all
parameters lower than 1.1, with amedian of 81.00%. Conver-
gence rates varied drastically across simulation conditions;
hence, we conducted a thorough examination of convergence
rates and reported the findings. As for the other outcome
measures, we presented results only for replications upon
successful convergence (Fig. 3).

Convergence rate

Table 1 displays convergence rates for each simulation condi-
tion.Values in bold indicate convergence rates that are greater
than 0.8. We begin with the complete data condition. When
n = 50, convergence rates were notably higher for informa-
tive priors (I-ATK, I-PRK, and I-PSK), with I-ATK showing
the highest convergence rate. These high convergence rates
were followed by weakly informative priors (WI-ATK, WI-
PRK, andWI-PSK). Between the weakly informative priors,
the convergence rate was considerably higher when themean
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Table 1 Convergence rate

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

Complete Concen-S-30% Consen-S-70%

DIF 0.150 0.414 0.950 0.088 0.350 0.860 0.050 0.168 0.536

I-ATK 1.000 0.994 1.000 1.000 0.998 0.998 1.000 0.998 0.996

WI-ATK 0.628 0.758 0.984 0.626 0.762 0.972 0.614 0.708 0.854

I-PRK 0.870 0.796 0.978 0.854 0.742 0.930 0.852 0.670 0.742

WI-PRK 0.270 0.484 0.950 0.256 0.406 0.896 0.196 0.256 0.626

I-PSK 0.926 0.916 0.914 0.908 0.900 0.810 0.920 0.926 0.890

WI-PSK 0.348 0.582 0.938 0.312 0.498 0.864 0.310 0.350 0.616

Constant-30% Constant-70%

DIF 0.096 0.308 0.898 0.050 0.214 0.676

I-ATK 1.000 0.998 0.996 1.000 1.000 0.998

WI-ATK 0.694 0.782 0.964 0.624 0.704 0.890

I-PRK 0.890 0.770 0.950 0.894 0.686 0.800

WI-PRK 0.270 0.428 0.924 0.190 0.286 0.736

I-PSK 0.918 0.906 0.858 0.926 0.934 0.896

WI-PSK 0.322 0.492 0.896 0.280 0.390 0.724

Concen-E-30% Concen-E-70%

DIF 0.092 0.362 0.892 0.062 0.244 0.806

I-ATK 1.000 0.996 1.000 1.000 1.000 0.998

WI-ATK 0.654 0.754 0.972 0.654 0.720 0.928

I-PRK 0.880 0.768 0.958 0.864 0.720 0.866

WI-PRK 0.254 0.422 0.912 0.222 0.312 0.756

I-PSK 0.940 0.916 0.878 0.936 0.930 0.898

WI-PSK 0.328 0.508 0.904 0.280 0.482 0.812

Note. Convergence rates greater than 0.8 were bolded. DIF = diffuse prior. I-ATK = informative prior at the true knot location. WI-ATK = weakly
informative prior at the true knot location. I-PRK = informative prior at the pre-knot location. WI-PRK = weakly informative prior at the pre-knot
location. I-PSK = informative prior at the post-knot location. WI-PSK = weakly informative prior at the post-knot location

hyperparameter aligned with the true value (WI-ATK), in
comparison with WI-PRK and WI-PSK. The lowest conver-
gence rates were observed for DIF. These findings suggest
that the use of priors with higher degrees of informativeness
and better alignment with true values is advantageous for
achieving higher convergence rates. When n = 150, conver-
gence rates increased across weakly informative and diffuse
priors (DIF, WI-ATK, WI-PRK, and WI-PSK). This pattern
highlights that, as sample sizes increase, the drawbacks of
weakly or non-informative priors are mitigated and compen-
sated with larger sample sizes. When n = 500, all prior
conditions achieved high convergence rates even greater than
0.9. It is evident that large sample sizes are advantageouswith
regard to obtaining high convergence.

As the proportion of missing data at the seventh time
point increased to 30%, convergence rates decreased under
the DIF condition, with a further noticeable decrease when
70% of the data were missing at the end. In contrast, conver-
gence rates consistently remained (almost) 100% under the

I-ATK setting, regardless of the sample sizes. These results
highlight the advantages of using informative-accurate prior
specifications in the presence of missing data, while the dif-
fuse settings can suffer from low convergence rates. For
the weakly informative prior settings (WI-ATK, WI-PRK,
and WI-PSK), convergence rates tended to decrease under
the 70% missing data conditions. While similar tendencies
were observed for other prior settings, excluding I-ATK, the
decreases were noticeable in the Consen-S-70% condition,
even at the large sample size level. This pattern suggests that
high proportions of missing data concentrated at the begin-
ning can face challenges in achieving high convergence rates.

Coverage rate

Table 2 presents coverage rates under different simulation
conditions. We boldfaced values exceeding 0.9. When there
were nomissingdata and the sample sizewas 50,weobserved
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Table 2 Coverage rate

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

Complete Concen-S-30% Consen-S-70%

DIF 0.877 0.887 0.927 0.923 0.872 0.924 0.936 0.858 0.900

I-ATK 0.996 0.990 0.968 1.000 0.994 0.974 1.000 0.994 0.990

WI-ATK 0.957 0.951 0.946 0.972 0.941 0.940 0.982 0.936 0.945

I-PRK 0.006 0.062 0.396 0.008 0.044 0.333 0.002 0.030 0.167

WI-PRK 0.683 0.858 0.923 0.680 0.847 0.921 0.631 0.830 0.901

I-PSK 0.010 0.034 0.352 0.002 0.014 0.203 0.000 0.000 0.040

WI-PSK 0.614 0.749 0.880 0.571 0.656 0.879 0.471 0.488 0.736

Constant-30% Constant-70%

DIF 0.884 0.849 0.933 0.939 0.858 0.909

I-ATK 1.000 0.988 0.970 0.998 0.986 0.972

WI-ATK 0.972 0.933 0.942 0.984 0.931 0.937

I-PRK 0.012 0.060 0.354 0.002 0.034 0.257

WI-PRK 0.695 0.866 0.928 0.613 0.806 0.918

I-PSK 0.002 0.008 0.242 0.000 0.002 0.082

WI-PSK 0.567 0.687 0.891 0.511 0.515 0.821

Concen-E-30% Concen-E-70%

DIF 0.892 0.887 0.935 0.922 0.862 0.916

I-ATK 1.000 1.000 0.968 0.998 0.996 0.972

WI-ATK 0.970 0.949 0.944 0.969 0.928 0.945

I-PRK 0.006 0.056 0.357 0.000 0.028 0.336

WI-PRK 0.704 0.857 0.926 0.652 0.837 0.932

I-PSK 0.010 0.010 0.250 0.002 0.008 0.141

WI-PSK 0.611 0.698 0.864 0.566 0.605 0.825

Note. Coverage rates greater than 0.9 were bolded. DIF = diffuse prior. I-ATK = informative prior at the true knot location. WI-ATK = weakly
informative prior at the true knot location. I-PRK = informative prior at the pre-knot location. WI-PRK = weakly informative prior at the pre-knot
location. I-PSK = informative prior at the post-knot location. WI-PSK = weakly informative prior at the post-knot location

high coverage rates for I-ATK and WI-ATK, with I-ATK
exhibiting the highest coverage rate. These results indicate
the importance of alignment with the true value and higher
informativeness for obtaining high coverage rates. Follow-
ing WI-ATK, DIF showed high coverage rages, which were
followed by WI-PRK and WI-PSK. The lowest coverage
rateswere observed under I-PRKand I-PSK, highlighting the
negative effect of misaligned informative priors on coverage
rates. As sample sizes increased to 150, low coverage rates
under DIF or misaligned prior conditions (I-PRK, WI-PRK,
I-PSK, and WI-PSK) increased, and further increases were
observed when sample sizes amounted to 500. This demon-
strates the role of larger sample sizes in achieving higher
coverage rates.

In the presence ofmissing data, priors placed at the correct
location (I-ATK andWI-ATK) were the least affected, main-
taining high coverage rates with slight variations, regardless
of the proportion of missing values at the final time point.
When informative priors were placed at incorrect locations

(I-PRK and I-PSK), coverage rates decreased further as
the proportion of missing data increased to 30% and 70%.
Such decreases were obvious for n = 150 and n = 500.
Meanwhile, coverage rates remained relatively consistent or
showed a slight decrease under the DIF condition when the
proportion of missing data was 70% at the last time point.
Particularly for n = 50, coverage rates were higher in the
DIF condition compared to conditions with priors placed at
incorrect locations (I-PRK, WI-PRK, I-PSK, and WI-PSK).

Bias

We present Fig. 4 to report bias across all simulation condi-
tions. Rows in the figure correspond to different sample sizes,
and columns represent each level of the missing data condi-
tion. The x-axis and y-axis denote prior specifications and
the values of bias, respectively. The dashed horizontal line
at 0 serves as a reference for no bias. To visualize average
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Fig. 4 Boxplots of bias for knot location estimates across simulation conditions

bias, triangular dots are plotted in each condition. However,
due to some severely skewed or outlier parameter estimates,
we additionally created boxplots to examine medians of bias
across converged replication. Therefore, Fig. 4 not only dis-
plays average bias but also reveals the degree of deviations in
parameter estimates from the true value at converged replica-
tions. Each of the triangular dots and boxplots corresponds to
one of the seven prior specifications (from left to right: DIF,
I-ATK, WI-ATK, I-PRK, WI-PRK, I-PSK, and WI-PSK) in
respective simulation conditions.

When the data were complete and n = 50, the bias was the
most minimal for I-ATK, while the highest bias was found
for informative priors with misaligned centers (I-PRK and
I-PSK). It is clear that specifying informative priors with
centers aligned to the true location leads to the lowest bias.
Conversely, when informative priors are misplaced, parame-
ter estimates can be biased to the largest extent. Using diffuse
prior settings seems preferable tomisaligned informative pri-
ors to avoid high bias, given that diffuse priors generally had
little to no bias. In addition, for priors placed before the true
location (I-PRK and WI-PRK), estimates were negatively
biased, while for those placed after the true knot location (I-
PSK and WI-PSK), estimates were positively biased. These
findings highlight that locating prior distributions impacts
the parameter estimation by shifting the direction of bias. As
the sample size increased to 150 and 500, the degree of bias
decreased. This indicates the effect of larger sample sizes

in mitigating bias. For n = 500, boxplots of WI-PRK and
WI-PSK touched the dashed horizontal line, suggesting that
biaswithmisaligned priors can be alleviated by incorporating
weakly informative prior specifications.

When30%ofdataweremissing at thefinal timepoint, bias
increased across different prior settings and sample size con-
ditions because boxplots deviated from the dashed horizontal
line. As the proportion of missing data increased to 70% at
the last time point, we observed even greater degrees of bias
across the simulation conditions. However, such increases in
bias were minimal for I-ATK. In particular, we focus on the
n = 50 condition within the 70% missing data scenarios.
When informative priors were accurately located (I-ATK),
bias hardly increased. This demonstrates that informative and
accurate priors can aid the negative consequences of miss-
ing data. Among the three attrition patterns, no substantial
differences were detected.

RMSE

Table 3 showcases RMSE across the simulation conditions
considered. Overall, the observed patterns of RMSE aligned
closely with those of bias. For this reason, we briefly point
out the patterns recognized.

The smallest RMSE was attained when using informa-
tive priors at the true location (I-ATK). Conversely, the
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Table 3 Root mean squared error

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

Complete Concen-S-30% Consen-S-70%

DIF 0.920 0.737 0.335 0.890 0.816 0.359 0.867 0.914 0.614

I-ATK 0.202 0.211 0.199 0.202 0.222 0.201 0.183 0.234 0.216

WI-ATK 0.553 0.462 0.275 0.541 0.529 0.302 0.540 0.597 0.434

I-PRK 1.458 1.191 0.580 1.478 1.272 0.706 1.525 1.417 1.004

WI-PRK 1.377 0.840 0.316 1.443 0.936 0.360 1.562 1.229 0.588

I-PSK 1.415 1.228 0.630 1.446 1.316 0.817 1.520 1.433 1.180

WI-PSK 1.326 0.883 0.349 1.396 1.092 0.434 1.609 1.338 0.839

Constant-30% Constant-70%

DIF 0.920 0.781 0.336 0.940 0.919 0.453

I-ATK 0.207 0.223 0.196 0.179 0.229 0.212

WI-ATK 0.575 0.512 0.284 0.527 0.571 0.367

I-PRK 1.469 1.261 0.670 1.518 1.384 0.890

WI-PRK 1.378 0.909 0.317 1.548 1.203 0.499

I-PSK 1.442 1.307 0.754 1.505 1.403 1.038

WI-PSK 1.360 1.033 0.393 1.558 1.292 0.604

Concen-E-30% Concen-E-70%

DIF 0.917 0.759 0.344 0.883 0.843 0.433

I-ATK 0.201 0.217 0.198 0.199 0.230 0.208

WI-ATK 0.548 0.502 0.288 0.529 0.535 0.338

I-PRK 1.476 1.258 0.642 1.498 1.351 0.797

WI-PRK 1.412 0.924 0.312 1.493 1.075 0.400

I-PSK 1.438 1.291 0.727 1.479 1.359 0.907

WI-PSK 1.377 1.031 0.391 1.484 1.180 0.542

Note. DIF = diffuse prior. I-ATK = informative prior at the true knot location. WI-ATK = weakly informative prior at the true knot location. I-PRK
= informative prior at the pre-knot location. WI-PRK = weakly informative prior at the pre-knot location. I-PSK = informative prior at the post-knot
location. WI-PSK = weakly informative prior at the post-knot location

largest RMSE results were obtained with informative pri-
ors at incorrect locations (I-PRK and I-PSK), indicating that
the misplacement of informative priors can lead to a greater
dispersion of parameter estimates. In addition, we observed
the influence of sample size: RMSE was the smallest for
n = 500 in each level of the missing data and prior con-
ditions. Finally, as the amount of missing data increased,
RMSE tended to increase, indicating the negative effects of
missing data on the dispersion of parameter estimates.

Posterior means of knot location

Figure 5 provides a collection of ridgeline plots display-
ing the distributions of posterior means for knot locations
across simulation conditions. Each column corresponds to
each level of the missing data condition, and rows repre-
sent three different sample sizes. Within each combination
of missing data and sample size levels, seven respective dis-
tributions of posteriormeans for knot locations are described,

each corresponding to different prior specifications. Moving
from top to bottom, these distributions represent the posterior
means for knot locations under the following prior distribu-
tions: DIF, I-ATK, WI-ATK, I-PRK, WI-PRK, I-PSK, and
WI-PSK. Within each distribution, a vertical line marks the
median to denote the center of the distribution.

We first examined conditions with complete data. When
n = 50, we observed that the centers of the distributions
for DIF, I-ATK, and WI-ATK were located at the true loca-
tion. The centers for I-PRK and WI-PRK were at or close
to time point 2.5, and the centers for I-PSK and WI-PSK
were at or close to time point 5.5. These patterns suggest that
different prior specifications govern knot location estimates,
particularly for small sample size conditions. In addition, we
found that the informativeness of the prior settings influenced
the dispersion of the distributions. For informative priors (I-
ATK, I-PRK, and I-PSK), the dispersion was smaller and the
knot location estimates gathered around their respective cen-
ters. For weakly informative priors (WI-ATK, WI-PRK, and
WI-PSK), the estimates were more dispersed around their
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Fig. 5 Distributions of posterior means for knot location across simulation conditions

centers compared with informative priors. For diffuse priors,
the posterior means scattered across all time points. When
n = 150, we noticed a shift in the centers for I-PRK, WI-
PRK, I-PSK, and WI-PSK moving toward time point 4. This
shift indicates that the impact of different prior specifica-
tions diminishes as sample sizes increase. As the sample size
further increased to 500, the centers of all distributions were
positioned at or near the true location. In particular, the shapes
of distributions under DIF, I-ATK, and WI-ATK were quite
similar. However, for informative priors placed at incorrect
locations (I-PRK and I-PSK), the centers were farthest from
the true location. These results highlight that knot locations
were generally recovered around the true location under the
largest sample size condition; yet, there existed the negative
impact of informative and inaccurate priors on the estimation
of knot locations.

As the proportion of missing data increased to 30% at the
seventh time point, different patterns were found depending
on sample size. For n = 50, the centers for DIF, I-ATK, and
WI-ATK remained at the true location. For the other prior
settings, the centers were around time point 2.5 for I-PRK
andWI-PRK, while for I-PSK andWI-PSK, the centers were
around time point 5.5.When n = 150, the centers for I-PRK,
WI-PRK, I-PSK, and WI-PSK shifted toward the true loca-
tion, and a further shift toward the true locationwas found for
n = 500. This observation means that, even in the presence

of missing data, larger sample sizes wield more influence in
determining the centers of the distributions for knot location
estimates compared to prior distributions. When the propor-
tion of missing data amounted to 70% at the end, the overall
patternswere very similar to those under 30%ofmissing data
conditions. However, the centers of the incorrectly placed
priors (I-PRK, WI-PRK, I-PSK, and WI-PSK) were farther
from the time point 4 compared to conditions under the 30%
of missing at the end. In the 70% of missing data conditions,
we could additionally observe that the centers of misplaced
priors were the farthest under the Concen-S-70% condition.

Illustrative example

We demonstrate the Bayesian estimation of knot locations
in the presence of missing data characterized by attrition
patterns, using a real dataset from the Early Childhood
Longitudinal Studies - Kindergarten Cohort of 1998 (ECLS-
K; National Center for Education Statistics - United States
Department of Education, 2013). The ECLS-K study aimed
to investigate various aspects of children’s early school
experiences in a longitudinal framework.Aparticularly inter-
esting aspect has been mathematics achievement, which is
known to exhibit piecewise growth patterns, as indicated in
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Fig. 6 Attrition pattern for the ECLS-K data

methodological and applied studies (e.g., Kohli et al., 2015;
Kohli & Sullivan, 2019; Marvin et al., 2023). These previ-
ous studies focused on piecewise patterns of mathematics
achievements in the complete data scenarios. This illustra-
tive example considers ECLS-K data with missing values
and allows us to examine the estimation of changepoints in
missing attrition scenarios under different prior settings. We
provide the ECLS-K dataset, R code, and JAGS syntax used
in the Illustrative Example section as online supplementary
materials.

Data

The ECLS-K data consisted of a nationally representative
sample of approximately 21,000 children from the United
States who began kindergarten in the 1998–1999 academic
year. Mathematics achievement was measured by mathe-
matics item response theory (IRT) scores across seven time
points: the fall and spring of kindergarten, fall and spring of
first grade, and the spring of third, fifth, and eighth grades.
We coded these time points as 0, 0.5, 1, 1.5, 3.5, 5.5, and
8.5, respectively. To reflect a medium sample size and make
our illustration applicable to realistic scenarios, we selected
a random subsample of 150 children from the full dataset,
who had complete data in the fall of kindergarten and either
complete or missing responses from the spring of kinder-
garten through the spring of the eighth grade for math IRT
scores. We made sure the missing data patterns from the
selected children followed the attrition pattern. In particular,

we found that the attrition pattern from the sample followed a
decelerated increase in missing values, which was one of the
missing data conditions in the simulation setup. At the final
time point, 72% of the data were missing. Figure 6 illustrates
this attrition pattern in our subsample from the ECLS-K data.
Themath IRT scoresmeasured across seven time points were
used as the outcome variable.

Analysis

Weestimated PGMsunder seven different prior distributions.
For illustrative purposes, we considered prior specifications
similar to those utilized in the simulation design3. Specifi-
cally, we adjusted the hyperparameters of the uniform and
truncated normal priors as follows:

• For DIF, γ ∼ U(0, 8.5). This uniform distribution sug-
gests that any values for knot locations from the first to
the last time points, coded as 0 and 8.5, respectively, are
equally likely.

• For I-ATK, γ ∼ N (4.25, 0.417) T (0, 8.5). The mean
hyperparameter of 4.25 represents the midpoint of the

3 The prior specifications in this illustrative example are chosenwithout
relying on prior knowledge. While these specifications mimic realistic
scenarios in Bayesian analysis by varying prior accuracy and infor-
mativeness, they are purely illustrative. In practice, researchers should
derive their prior distributions from substantive theories or previous
studies to make sure that the priors are appropriately accurate and infor-
mative, making substantive sense in the specific research context.
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time points, substantively the middle of the fall semester
of the fourth grade. Thevariance hyperparameter of 0.417
is determined in a way that informative priors overlap
with each other by 10%.

• For WI-ATK, γ ∼ N (4.25, 2.085) T (0, 8.5). The mean
hyperparameter is the same as I-ATK. The variance
hyperparameter of 2.085 is calculated by multiplying 5
by the variance of the informative prior distribution.

• For I-PRK, γ ∼ N (2.125, 0.417) T (0, 8.5). The mean
hyperparameter is the center between the first time point
and the middle of the fall semester of the fourth grade.

• ForWI-PRK, γ ∼ N (2.125, 2.085)T (0, 8.5). This prior
has the same mean hyperparameter as I-PRK but has a
larger variance for the weakly informative setting.

• For I-PSK, γ ∼ N (6.375, 0.417) T (0, 8.5). The mean
hyperparameter is centered between the midpoint of
fourth grade and the last time point.

• ForWI-PSK, γ ∼ N (6.375, 2.085)T (0, 8.5). This prior
distribution uses the samemeanhyperparameter as I-PSK
with the variance hyperparameter value for the weakly
informative prior.

Prior distributions for parameters other than knot locations
were consistent with those used in the simulation design.
With all the prior specifications set, we used the R rjags
package for Bayesian analyses. We implemented four chains
via Gibbs sampling, each chain consisting of 50,000 itera-
tions for burn-in followed by 50,000 additional iterations for
posterior inference, with a thinning interval of 1.

Results

All models indicated satisfactory evidence of convergence
with the R̂ statistics lower than 1.1. We report the summary
of posterior distributions of knot locations in Table 4, which
includes density plots, posterior means, posterior medians,
posterior standard deviations, and 95% credible intervals
under seven prior specifications. In the density plots, the
blue solid line is the posterior mean, the green dashed line
indicates the posterior median, and the two red dotted lines
respectively mark the 2.5th and 97.5th percentiles in credible
intervals.

For all prior conditions, the posterior means of knot
locations suggested a changepoint during the fall of the
fourth grade. The posterior means ranged from 4.176 to
4.368, indicating timing around the middle of the fall of the
fourth year. The minimum and maximum values, 4.176 and
4.368, respectively, were observed under I-PRK and I-PSK.
These results are understandable given that these two pri-
ors are informative, potentially pulling estimates toward a

presumed location. However, there were minimal fluctua-
tions in estimates across the conditions. Overall, this finding
indicates that the changepoint in mathematics achievement
likely occurs during the fall of the fourth grade.

Discussion

In Bayesian PGMs, the knot location is an important param-
eter because it indicates the time at which transitions occur
between phases and denotes theoretically and substantively
meaningful moments. While researchers can predetermine
knot locations based on substantive theories or research
design, a more flexible approach is to estimate knot loca-
tions using collected data. An important feature of Bayesian
PGMs is that researchers can incorporate prior information
to estimate knot locations. However, the estimation of knot
locations can be affected by the presence of missing data that
are ubiquitous in longitudinal studies. There is a research
gap in exploring the impact of these two factors on recover-
ing knot placements—an understanding critical for drawing
accurate research conclusions about when to change. The
objective of the current investigation was to examine the
impact of prior specifications and missing data on the recov-
ery of knot placements via a Monte Carlo simulation study
and to demonstrate applications using illustrative examples.
Next, we discuss key simulation results, provide advice for
researchers, and suggest future research directions.

Different prior specifications

We examined several prior specifications in the context of
knot locations. By incorporating uniform and truncated nor-
mal distributions into the simulation setup, we manipulated
the degree of informativeness and alignment with the true
knot location. The evaluation of parameter recovery under
outcome measures carried different nuances regarding the
recovery of knot placement. In general, we observed the
advantages of informative-accurate prior specifications on
recovering true knot placement, which was especially evi-
dent in conditions with small sample sizes. These advantages
encompassed high convergence and coverage rates, low bias
and RMSE, and less dispersed distributions of knot location
estimates around the true knot location. Given these advan-
tages, we see informative and accurate priors as potential
solutions to address the low convergence rates encountered
by Kohli et al. (2015) when estimating Bayesian piece-
wise growth mixture models with small sample sizes. While
researchers may consider increasing the number of iterations
to improve convergence rates (Lock et al., 2018), the use of
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informative and accurate priors is also promising for achiev-
ing quality recovery.

In practice, where the true knot location is unknown or
researchers have limited prior knowledge, specifying infor-
mative priors at wrong locations may result in low coverage
rates and high bias andRMSE. In this regard, the use of infor-
mative priors should be approached cautiously. The benefits
are contingent on accurate placement at the true location;
on the other hand, misplacement may yield negative conse-
quences. A reasonable alternative when partial knowledge is
available is to consider specifying weakly informative priors
around hypothesized knot locations. Such an alternative still
offers benefits in terms of high coverage rates, low bias, and
low RMSE, particularly with at least medium sample sizes.

The higher influence of prior distributions was diluted as
sample sizes increased. This result is not surprising because
Bayesian inference is the compromise between prior knowl-
edge and obtained data (e.g., Gelman et al., 2013; van
de Schoot et al., 2021). The decreasing influence of prior
distributions with larger sample sizes was evident in the dis-
tributions of posterior means for knot locations. As sample
sizes increased from 50 to 500, centers of distributions for
misplaced prior distributions shifted toward the true loca-
tion. Therefore, it is important to recognize the sample size
effect in conjunction with the impact of different prior dis-
tributions. Obtaining higher sample sizes when available is
recommended to mitigate the undesirable outcomes associ-
ated with using misplaced prior distributions in estimating
knot locations.

Presence of missing data

The simulation results revealed challenges in recovering
knot placements due to the presence of missing data, which
complicated the recovery associated with certain prior spec-
ifications. Increasing proportions of missing data resulted in
negative consequences for parameter recovery, such as higher
bias, particularlywhen priorswere incorrectly located. These
findings add new insights to the existingworks (e.g., Graham,
2009; Nicholson et al., 2017; Shi et al., 2021), such that the
use of informative and inaccurate priors hampers parameter
recovery under missing data scenarios. Negative parameter
recovery results, such as increased bias, were observed even
with diffuse prior settings under large proportions of miss-
ing data. In addition, when priors weremisplaced, the centers
of distributions of posterior means shifted towards incorrect
knot locations. We also observed interactions between the
amount and pattern of missing data for certain outcomemea-
sures. In comparisonwith other simulation conditions, a large
amount of missing data at the beginning was associated with
noticeable decreases in convergence rates and a greater dis-
tance between the centers of the distributions of posterior
mean estimates and the true knot location. This finding res-

onates with Heo et al. (2024) and emphasizes the negative
consequences of a large amount of missingness in the begin-
ning. Therefore, it is recommended that applied researchers
carefully plan data collection strategies to minimize partici-
pant dropouts in the earlier stages of a study.

Our investigation uncovered that the use of informative or
weakly informative priors placed at the true location could
maintain high coverage rates and prevent further increases in
bias in the presence of missing data. In addition, the centers
of distributions of posteriormean estimateswere consistently
located at the true knot placement. Therefore, we emphasize
that researchers can take advantage of Bayesian inference by
leveraging available informationwhen finding knot locations
in the presence of missing data. In comparison with findings
by Heo et al. (2024) that observed a negligible impact of
informative and accurate priors on latent means in Bayesian
model evaluation under missing data scenarios, our work
adds to the field by demonstrating the sensitivity of knot
locations to informative prior settings in accurately estimat-
ing knot locations.

Advice for researchers

Which priors should we choose?

Researchers may wonder which priors should be chosen. It
might seem reasonable to use diffuse priors as long as mod-
els converge, given the challenge of finding informative and
accurate priors in practice. Such reasoning seems persuasive
because our simulation results show that, when sample sizes
are large, diffuse priors tend to yield parameter estimates
closer to the true values. However, obtaining large samples
is not always feasible, and what constitutes a “large” sam-
ple can vary by context. Diffuse priors also contribute to
greater posterior uncertainty, leading to wider credible inter-
vals and increased sensitivity in smaller samples. Another
concern is that even researchers who make every effort to
specify meaningful priors may inadvertently use informative
yet inaccurate priors without realizing they are introducing
bias. Indeed, our results indicate that, even with large sam-
ple sizes, incorrectly specified informative priors can lead
to biased estimates, a problem exacerbated by missing data.
One possible way to mitigate the strong influence of an inac-
curate prior is to increase its variance (Depaoli, 2014). Still,
all prior distributions inevitably contain some level of inac-
curacy that can substantially influence the estimation of knot
locations.

Our advice is to include prior sensitivity analyses as an
integral part of analysis plans for a confident and thorough
examination (Depaoli et al., 2020; van de Schoot et al., 2018).
Conducting these analyses helps researchers avoid relying
on a single prior: whether it is an informative yet inaccu-
rate prior that might be misleading or a diffuse prior that can
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introduce unnecessary uncertainty. Prior sensitivity analyses
allow researchers to evaluate how final estimates respond to
different priors and to detect any discrepancies in the out-
comes. For a more comprehensive understanding of prior
choices, it is usually recommended to compare the impact
of different priors, ranging from diffuse to weakly informa-
tive or informative (Depaoli et al., 2017; Depaoli & van de
Schoot, 2017). For transparency, researchers should report
results under each prior specification. If the results from sen-
sitivity analyses fluctuate under different prior specification
scenarios, it signals that the data may not align with the
substantive theories on changepoints. Then, researchers may
consider the need for follow-up studies under different condi-
tions to test the theories (e.g., different sample characteristics,
smaller or larger sample sizes, or alternative prior specifica-
tions). However, if the results are robust and estimates show
minimal fluctuations, as shown in our illustrative examples, it
suggests that the results are stable against the supposed inac-
curacy, and the underlying theory is strong and reinforces
confidence in the knot location estimates.

We acknowledge that specifying prior distributions in
a proper and accurate manner is not always intuitive.
Researchers can derive priors based on previous findings or
meta-analysis (see Heo et al., 2024, for examples of spec-
ifying priors in mixture PGMs using earlier study results).
However, available prior knowledge may still be limited by
existing literature. As an alternative, researchers can consider
prior elicitation. Through eliciting expert knowledge, infor-
mation or insight from experts is aggregated and extracted
to construct probabilistic representations of this knowledge,
which are employed as prior distributions. This way, experts’
prior knowledge is incorporated into the analysis. For guid-
ance on eliciting priors based on expert judgment, seeVeen et
al. (2017). Specifically for latent growthmodeling, see van de
Schoot et al. (2018) and Veen et al. (2020). In small-sample
settings, Zondervan-Zwijnenburg et al. (2017) offer useful
strategies. For a broader overview of eliciting prior knowl-
edge, Mikkola et al. (2024) is a comprehensive resource.

How can we prevent missing data?

Researchers can take several proactive actions to prevent or
minimize the occurrence of missing data or attrition, such as
clear communication and the use of refined data-collection
instruments. In addition, in the design phase of a longitudi-
nal study, researchers have the option to implement planned
missing data designs as data collection strategies (Rhem-
tulla et al., 2014; Wu & Jia, 2021). In planned missing data
designs, participants are randomly assigned to respond at
a subset of measurement occasions to help reduce partic-
ipant fatigue and potentially lower attrition rates. Because

plannedmissing data areMCAR, parameter estimates remain
unbiased. In addition, planned missing data designs offer
advantages in terms of higher efficiency by achieving a better
balance between the number of repeated measures for each
participant and the overall sample size (Wu et al., 2016). This
contributes to a reduced budget and allows for the collection
of a larger number of participants, which can increase statis-
tical power.

Practical challenges and future directions

The current work lays the foundation for future research
aimed at explaining and addressing the issues surround-
ing knot locations. We used a linear-linear PGM with one
unknown changepoint as the population model to system-
atically evaluate the interaction between priors and missing
data, making this study one of the first investigations into
missing data and parameter recovery issues in Bayesian
PGMs. However, PGMs can be extended into more com-
plex formats, including models with multiple knot locations,
mixture components, and individually varying knot locations
(e.g., Harring et al., 2021; Heo et al., 2024; Kohli et al., 2015;
Lock et al., 2018; Peralta et al., 2022). These extensions
introduce several practical challenges that warrant further
investigation.

For instance, increasing the number of knots expands the
parameter space. In such settings, the computational burden
increases, and the use of diffuse priors could lead to con-
vergence difficulties or unreliable estimation, particularly in
small sample conditions (Kohli et al., 2015). One possible
approach is to employ weakly informative priors if substan-
tive knowledge suggests likely intervals where knot shifts
typically occur. Here, each knot location requires its own
distribution, and constraints on hyperparameters can be con-
sidered (Lock et al., 2018). Nevertheless, follow-up research
is needed to develop computationally efficient yet flexi-
ble prior strategies that can reflect substantive theories and
allow for sensitivity assessments in estimating multiple knot
locations (see Heo et al., 2024, for examples of prior specifi-
cation strategies and sensitivity analyses in mixture PGMs).
When knots vary across latent classes, additional modeling
challenges arise, such as label-switching issues, which can
be handled by imposing parameter constraints or by using
relabeling algorithms (Cassiday et al., 2021; Papastamoulis,
2016).Conceptually, the prior specification strategies consid-
ered in this article could be extended by assigning separate
priors to different classes, although the performance of such
approaches requires empirical validation.

The presence of missing data adds another layer of com-
plexity when estimating knot locations in more complex
PGMs. In the mixture modeling framework, missing data

123



  201 Page 22 of 27 Behavior Research Methods           (2025) 57:201 

patterns might differ systematically across latent classes,
making proper treatment of these distinct patterns crucial to
avoid misclassification. When the true growth process fea-
tures multiple changepoints, missing data patterns – such as
whether missing values are concentrated at particular mea-
surement occasions (Heo et al., 2024) – could distort the
recovery of knot placements. In PGMs with individually
varying knots, missing data may disproportionately affect
certain individuals or subgroups. The current understanding
of knot location estimation in the presence of missing data
is still in its early stages. More comprehensive explorations
of the interactions between complex PGMs and missing data
deserve further attention in future research.

In addition, we focused on MAR data. Although MAR
is a common assumption in methodological research, we
note that truemissing datamechanisms are usually unknown.
Missingness can be nonignorable (Enders, 2011), andwe rec-
ognize a possibility of a combination of differentmissing data
mechanisms as pointed out in Graham (2009); Nicholson et
al. (2017). The recovery of parameters in PGMs, including
knot locations, in these complexmissing data scenarios is still
unknown. Future research should delve into these contexts
to ensure unbiased parameter estimates.

In our simulation design, we generated data from seven
equally spacedmeasurement occasions,with the knot located
at the midpoint of the time period. However, the number of
time points and the placement of knots away from the mid-
point can play important roles in knot location estimation.
For instance, having more measurement occasions generally
provides more information for trajectory estimation. Mean-
while, suppose a knot is placed early in the measurement
timeline. In that case, fewer observations are available to
adequately anchor the pre-knot segment, hence complicat-
ing the knot location estimate, particularly if dropout occurs
in those earlier waves. Although these aspects were not con-
sidered in our main simulation, we conducted a secondary
simulation study to gain preliminary insight into knot loca-
tion recovery when a knot is placed early, in the middle, or
later among nine equally spaced measurements under one
missing data scenario. While the secondary simulation study
indicated that havingmore time points generally led to higher
convergence rates and improved parameter recovery (e.g.,
lower bias, lower RMSE, higher coverage) as sample size
increased, missing values still had an effect. Specifically,
when the knot locationwas placed earlier, estimates tended to
be underestimated, whereas placing the knot later led to over-
estimation.Desirable parameter recoverywas observedwhen
knot locationswere accurately specified, but pronounced bias
occurred when priors were incorrectly placed and farther
from the true knot location. In the incorrect prior conditions
that are the farthest, even the largest sample size did not fully
mitigate this bias. To conserve space, we refer readers to the

online supplementary materials for the full results4. Further
investigation is needed to explore these scenarios under more
complex conditions and missing data patterns.

Conclusion

Our study has illustrated that research conclusions can vary
depending on the specification of prior distributions and the
nature of missing data. We reiterate that understanding the
impact of these two factors is pivotal for reaching pronounced
conclusions regarding changepoints. We are hopeful that our
investigation will spark further explorations into modeling
the timing of change and benefit methodologists and applied
researchers interested in studying piecewise growth curves.

Open Practices Statements

To enhance the accessibility and usability of our model and
methods in this study, the datasets, R code, and JAGS syntax
for both the simulations and the illustrative example are freely
available at https://osf.io/j46bf/.

Appendix A. Assessing convergence using
different cutoff criteria

In the Bayesian piecewise growth modeling literature, dif-
ferent studies have used various cutoff criteria for assessing
chain convergence. Peralta et al. (2022); Lock et al. (2018)
used R̂ < 1.2 as a cutoff, while Depaoli et al. (2023); Heo et
al. (2024) used R̂ < 1.05. To analyze the impact of different
cutoff criteria, we conducted a sensitivity analysis on con-
vergence. Tables 5 and 6 present convergence rates for the
two respective cutoff values (i.e., R̂ < 1.05 and R̂ < 1.2).
When R̂ < 1.05 was used, the mean percentage of converged
replications was 61.57%, with a median of 69.40%. With
R̂ < 1.2, the mean percentage of converged replications was
80.36%,with amedian of 92.40%.Whenmore liberal criteria
were used (R̂ < 1.2), the convergence rates increased sub-
stantially. These results highlight that different cutoff criteria
have an impact on convergence rates. Other criteria, such as
Monte Carlo standard errors on the order of 0.001 (Kohli et
al., 2015) and Geweke statistics (Wang & McArdle, 2008),
have been also used in evaluating chain convergence. This
paper, however, used R̂ statistics. Thus, we did not evaluate
convergence using Monte Carlo standard errors or Geweke
statistics under different criteria.

4 The full results, data, R code, and JAGS syntax for this secondary
simulation study can be accessed as online supplementary materials.
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Table 5 Convergence rate for R̂ < 1.05

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500 n = 50 n = 150 n=500

Complete Concen-S-30% Consen-S-70%

DIF 0.096 0.334 0.928 0.062 0.264 0.816 0.022 0.118 0.412

I-ATK 0.998 0.982 1.000 0.998 0.984 0.998 1.000 0.992 0.976

WI-ATK 0.496 0.628 0.970 0.486 0.606 0.930 0.454 0.584 0.716

I-PRK 0.744 0.592 0.950 0.742 0.530 0.894 0.754 0.442 0.656

WI-PRK 0.152 0.400 0.938 0.116 0.328 0.880 0.084 0.184 0.558

I-PSK 0.846 0.732 0.832 0.846 0.778 0.688 0.864 0.844 0.638

WI-PSK 0.242 0.420 0.914 0.184 0.346 0.784 0.158 0.248 0.452

Constant-30% Constant-70%

DIF 0.064 0.258 0.856 0.026 0.154 0.566

I-ATK 0.996 0.980 0.996 1.000 0.996 0.988

WI-ATK 0.532 0.650 0.948 0.454 0.588 0.794

I-PRK 0.740 0.536 0.926 0.782 0.446 0.718

WI-PRK 0.140 0.340 0.908 0.088 0.206 0.692

I-PSK 0.844 0.774 0.750 0.888 0.880 0.694

WI-PSK 0.188 0.366 0.838 0.136 0.266 0.586

Concen-E-30% Concen-E-70%

DIF 0.056 0.272 0.860 0.042 0.196 0.722

I-ATK 0.996 0.980 0.998 1.000 1.000 0.992

WI-ATK 0.494 0.604 0.950 0.468 0.616 0.856

I-PRK 0.778 0.536 0.934 0.730 0.460 0.794

WI-PRK 0.140 0.342 0.898 0.094 0.238 0.726

I-PSK 0.854 0.776 0.790 0.880 0.880 0.710

WI-PSK 0.192 0.394 0.846 0.160 0.380 0.690

Note. Convergence rates greater than 0.8 were bolded. DIF = diffuse prior. I-ATK = informative prior at the true knot location. WI-ATK = weakly
informative prior at the true knot location. I-PRK = informative prior at the pre-knot location. WI-PRK = weakly informative prior at the pre-knot
location. I-PSK = informative prior at the post-knot location. WI-PSK = weakly informative prior at the post-knot location
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Table 6 Convergence Rate for R̂ < 1.2

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

Complete Concen-S-30% Consen-S-70%

DIF 0.262 0.544 0.976 0.230 0.460 0.914 0.164 0.300 0.636

I-ATK 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WI-ATK 0.822 0.884 0.990 0.822 0.866 0.984 0.834 0.836 0.930

I-PRK 0.964 0.930 0.984 0.938 0.924 0.964 0.944 0.894 0.854

WI-PRK 0.504 0.638 0.960 0.514 0.582 0.918 0.452 0.480 0.700

I-PSK 0.968 0.982 0.958 0.970 0.974 0.946 0.974 0.978 0.968

WI-PSK 0.556 0.738 0.962 0.554 0.688 0.932 0.524 0.554 0.784

Constant-30% Constant-70%

DIF 0.216 0.446 0.940 0.176 0.320 0.784

I-ATK 1.000 1.000 1.000 1.000 1.000 1.000

WI-ATK 0.836 0.896 0.982 0.840 0.816 0.958

I-PRK 0.962 0.924 0.970 0.940 0.920 0.912

WI-PRK 0.522 0.574 0.936 0.426 0.488 0.780

I-PSK 0.964 0.976 0.946 0.966 0.982 0.978

WI-PSK 0.550 0.676 0.950 0.492 0.638 0.862

Concen-E-30% Concen-E-70%

DIF 0.230 0.484 0.946 0.174 0.368 0.856

I-ATK 1.000 1.000 1.000 1.000 1.000 1.000

WI-ATK 0.830 0.876 0.984 0.824 0.850 0.980

I-PRK 0.940 0.928 0.990 0.942 0.902 0.928

WI-PRK 0.502 0.588 0.926 0.478 0.526 0.786

I-PSK 0.980 0.968 0.964 0.970 0.970 0.992

WI-PSK 0.564 0.702 0.946 0.512 0.688 0.884

Note. Convergence rates greater than 0.8 were bolded. DIF = diffuse prior. I-ATK = informative prior at the true knot location. WI-ATK = weakly
informative prior at the true knot location. I-PRK = informative prior at the pre-knot location. WI-PRK = weakly informative prior at the pre-knot
location. I-PSK = informative prior at the post-knot location. WI-PSK = weakly informative prior at the post-knot location
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