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Performance of Model Fit and Selection Indices for Bayesian Piecewise Growth 
Modeling with Missing Data

Ihnwhi Heo , Fan Jia and Sarah Depaoli 

University of California, Merced 

ABSTRACT 
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change 
processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to 
accurately capture growth trajectories and carefully consider knot placements. The presence of missing 
data is another challenge researchers commonly encounter. To address these issues, one could use 
model fit and selection indices to detect misspecified Bayesian PGMs, and should give care to the 
potential impact of missing data on model evaluation. Here we conducted a simulation study to exam
ine the impact of model misspecification and missing data on the performance of Bayesian model fit 
and selection indices (PPP-value, BCFI, BTLI, BRMSEA, BIC, and DIC), with an additional focus on prior 
sensitivity. Results indicated that (a) increasing the degree of model misspecification and amount of 
missing data aggravated the performance of indices in detecting misfit, and (b) different prior specifica
tions had negligible impact on model assessment. We provide practical guidelines for researchers to 
facilitate effective implementation of Bayesian PGMs.

KEYWORDS 
Bayesian piecewise growth; 
missing data; model fit; 
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The question of how social and behavioral phenomena 
change over time is at the core of latent growth modeling. 
The latent piecewise growth model (PGM) is a special case 
of the latent growth model to describe nonlinear dynamic 
change processes. It links developmental stages by introduc
ing knots (i.e., connecting points). The PGM is appealing to 
researchers aiming to model nonlinear trajectories consisting 
of multiple growth phases. This has led to a proliferation of 
the PGM in substantive research (e.g., Chung et al., 2017; 
Hu et al., 2020; Jaggars & Xu, 2016; Kroese et al., 2013; 
Patrick & Schulenberg, 2011). In the meantime, there have 
been numerous studies concerning difficulties in estimating 
nonlinear trends (e.g., Diallo et al., 2014; Grimm et al., 
2011), and the PGM is not an exception to the problem 
(Kohli et al., 2015; Kohli & Harring, 2013). Bayesian meth
ods can be alternatively suited for estimating nonlinear 
growth models (Lu et al., 2011; Serang et al., 2015; Smid 
et al., 2020; Zhang et al., 2007), including the PGM (e.g., 
Kohli et al., 2015; Lock et al., 2018).

The pertinent usage of Bayesian PGMs is closely linked 
to correct knot placement. Locations of knots should indi
cate substantively important moments and satisfy theoretical 
justifications (Flora, 2008; Kwok et al., 2010; Marcoulides, 
2018; Ning & Luo, 2017). Knots specified at incorrect loca
tions are tied to the suboptimal representation of true 
growth patterns and may lead to misleading research con
clusions. A major methodological task is hence to assess the 
fit between a hypothesized Bayesian PGM and data. To 
accomplish this task of model evaluation, various Bayesian 

model fit and selection indices (e.g., Asparouhov & Muth�en, 
2021; Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 
2018) can be utilized to detect model misspecification 
(Depaoli et al., 2023). In addition, the ubiquity of missing 
data in longitudinal studies applies to piecewise growth 
modeling (e.g., Hu et al., 2020; Lee & Rojewski, 2009; Li 
et al., 2001). In the Bayesian estimation framework, missing 
data are handled with data augmentation: Observed data are 
augmented with missing data and then combined with prior 
distributions for posterior inference (Lee, 2007; Tanner & 
Wong, 1987). A detailed exposition is provided by Daniels 
and Hogan (2008) and Gelman et al. (2013) of how data 
augmentation works for obtaining posterior estimates— 
under both ignorable missingness (i.e., missing at random 
[MAR] and missing completely at random [MCAR]) and 
nonignorable missingness (i.e., missing not at random 
[MNAR]).

We highlight that a noteworthy aspect is an interplay 
between the two issues: model misspecification and missing 
data. Both issues can complicate the process of evaluating 
Bayesian PGMs. It is known from the growth modeling lit
erature that failure to detect model misfit in the presence of 
missing data can result in biased growth parameter estima
tion that misleads conclusions, model evaluation that favors 
misspecified latent growth models, or both (Lu & Zhang, 
2021; Winter & Depaoli, 2022b). Another important element 
in Bayesian model evaluation is the specification of prior 
distributions (Cain & Zhang, 2019; Depaoli et al., 2023; 
Edwards & Konold, 2023; Winter & Depaoli, 2022b). Put 
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differently, how prior information is incorporated into eval
uating Bayesian PGMs may render different consequences 
in model selection. Thus far, Depaoli et al. (2023) is one 
notable work that examined the abilities of Bayesian model 
assessment indices to detect misfit in Bayesian PGMs. 
Depaoli et al. (2023) revealed that different prior specifica
tions had negligible effects on the overall performance of 
the indices considered. In addition, their investigation pro
vided valuable insights into the consequences of slope 
change rates, misspecified growth trajectories, misspecified 
knot locations, and sample sizes in evaluating Bayesian 
PGMs. However, their study only utilized complete datasets, 
and the potential impact of missing data on the evaluation 
of Bayesian PGMs remains unexplored to the best of our 
knowledge.

1.1. Novel Contributions

While Depaoli et al. (2023) found little impact of prior spec
ifications on the evaluation of Bayesian PGMs, previous 
studies highlighted different outcomes of Bayesian model 
evaluation under varying conditions of prior specifications 
in the presence of missing data. For instance, Winter and 
Depaoli (2022b) demonstrated the role of prior distributions 
in evaluating quadratic latent growth models with missing 
values. Their findings indicated that, with an increasing 
amount of missing data, some model fit indices were better 
at reliably detecting model misspecification when inform
ative priors were correctly placed. Because PGMs are 
another type of nonlinear latent growth models, it is reason
able to anticipate different consequences when evaluating 
Bayesian PGMs in the presence of missing data despite the 
little effect of priors under complete data scenarios found in 
Depaoli et al. (2023). As evidenced by Winter and Depaoli 
(2022b), it could be the case that the use of informative and 
accurate priors helps detect true models compared to weakly 
informative or diffuse prior distributions. Therefore, our 
examination takes prior distributions into account in detect
ing misfit in Bayesian PGMs under missing data scenarios, 
which is one contribution that sets our study apart.

The usual approach for evaluating the impact of missing 
data on model evaluation within longitudinal studies has 
typically involved manipulating the amount and spread of 
missing data. For instance, Winter and Depaoli (2022b) 
considered scenarios with 0%, 15%, and 50% as the overall 
amount of missing data distributed across either a single 
time point or four consecutive time points. As another 
example, Shi et al. (2021) included 0%, 15%, and 30% as the 
total amount of missing data and imposed missingness on 
the second half of repeated measurements. In both exam
ples, only a single attrition scenario was assumed. However, 
various forms of attrition are possible in longitudinal stud
ies. To illustrate, with the same 30% of attrition at the end 
of a study, one could observe a majority of missing data in 
the early stages of data collection; alternatively, most miss
ing data could occur at later measurement occasions. It is 
also possible that the proportion of attrition increases at a 
constant rate, resulting in an aggregate of 30% of missing 

data at the last time point. Therefore, we referred to Ortega- 
Azurduy et al. (2008) and considered linear and quadratic 
functions in missing data generation to reflect various attri
tion scenarios in practice. Because no methodological stud
ies have yet focused on these different possible forms of 
longitudinal missing data patterns in the context of Bayesian 
model evaluation, we consider this aspect as one important 
factor in the evaluation of Bayesian PGMs, being another 
novel contribution. In particular, we expect to observe dif
ferent performances of Bayesian model evaluation tools 
under different attrition patterns.

In the analysis of piecewise growth patterns, researchers 
can consider PGMs with either a single knot location (e.g., 
Hu et al., 2020; Jaggars & Xu, 2016; Li et al., 2019) or mul
tiple knot locations (e.g., Chung et al., 2017; Kroese et al., 
2013) to describe separate developmental stages. While our 
primary focus centers on single-knot PGMs, we also recog
nize the importance of evaluating Bayesian PGMs with mul
tiple knots. To explore this, we conducted a secondary 
simulation study to have a preliminary look at complex 
scenarios and thus contribute to the Bayesian evaluation of 
PGMs.

1.2. Goals and Organization

Given the utility of the Bayesian PGM, it is imperative that 
researchers comprehend how model misspecification and 
missing data impact detecting model misfit in Bayesian 
PGMs. In addition, the application of the Bayesian PGM is 
expected to rise due to recent implementations of Bayesian 
model fit and selection indices into statistical software 
(Asparouhov & Muth�en, 2021; Garnier-Villarreal & 
Jorgensen, 2020) and openly available code for piecewise 
modeling (Kohli et al., 2015, 2019). We are thus going to 
provide a holistic understanding of the performance of 
model fit and selection indices for Bayesian piecewise 
growth modeling with missing data by achieving the follow
ing two aims: We investigate (a) the performance of 
Bayesian model fit and selection indices in detecting misspe
cified Bayesian PGMs in the presence of model misspecifica
tion and missing data, and (b) the impact of different prior 
specifications on the overall performance of Bayesian model 
fit and selection indices. We assume ignorable missingness 
(i.e., MAR) in this study, as MAR is a basic assumption of 
modern missing data techniques (van Buuren, 2018) and it 
has been commonly studied in the growth curve modeling 
literature (e.g., Shi et al., 2021; Winter & Depaoli, 2022b).

We outline this article as follows. We first introduce the 
Bayesian PGM. We then present the Bayesian model fit and 
selection indices. In the following two sections, we peruse 
extant literature on the impact of model misspecification 
and missing data relevant to the current investigation. Next, 
we describe the design of the simulation study, which is fol
lowed by simulation results. The secondary simulation study 
is then presented. This article ends by summarizing the key 
findings surrounding the Bayesian model fit and selection 
procedures, providing guidelines for researchers interested 
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in implementing Bayesian PGMs, and discussing future 
research directions.

2. Bayesian Piecewise Growth Modeling

Latent growth models have been extended to represent non
linear trends (e.g., Blozis, 2007; Grimm et al., 2011; Kohli & 
Harring, 2013; Ram & Grimm, 2007). However, Diallo et al. 
(2014) pointed out that nonlinear growth models may face 
estimation issues such as high rates of non-convergence or 
inadmissible solutions, particularly when sample sizes are 
small. The Bayesian approach can reduce problems associated 
with non-converged and inadmissible estimates by incorpo
rating prior information (Can et al., 2015; Kohli et al., 2015). 
In terms of piecewise extensions, Bayesian estimation can be 
even more useful because the specification of knots introdu
ces additional model complexity, which may also affect model 
estimation (see, e.g., Kohli et al., 2015; Lock et al., 2018). In 
what follows, we describe the Bayesian approach to PGMs.

2.1. Likelihood Model

Let yi denote a J � 1 vector of repeatedly measured out
comes for individual i and gi be an M � 1 vector of growth 
factors for individual i. A PGM can be generally expressed 
with matrix notation:

yi ¼ Kgi þ �i with �i � Nð0, XyÞ,
gi ¼ a þ fi with fi � Nð0, XgÞ,

(1) 

where K is a J�M matrix of factor loadings that describe 
growth rates; �i is a J � 1 vector of error terms; Xy is a J- 
dimensional covariance matrix; a is an M � 1 vector of 
growth factor means; fi is an M � 1 vector of variance com
ponents that reflect the interindividual variation from a;

and Xg is an M-dimensional covariance matrix.
An important element in PGMs is the knot location, 

which can be either fixed or freely estimated. The K matrix 
can be used to specify piecewise trajectories, as well as knot 
locations. To demonstrate, we use a simple PGM in which 
two linear growth trajectories join at a single knot at occa
sion k. If we adjust yi in Equation (1) in scalar terms (e.g., 
Depaoli et al., 2023; Grimm et al., 2016), we have:

yij ¼ g0i þ g1i �minðtj, kÞ þ g2i �maxðtj − k, 0Þ þ �ij: (2) 

In Equation (2), yij denotes the outcome of interest for 
individual i measured at occasion j with 1 � j � J; tj refers 
to the time metric associated with the occasion j; g0i is the 
latent intercept; g1i is the first latent linear slope; g2i is the 
second latent linear slope; and �ij is the error term. The 
means of the growth factors are denoted by a ¼

ða0, a1, a2Þ
T , where respective subscripts correspond to 

growth factors (e.g., a1 is the mean of g1i). Next, we can 
express linear-linear piecewise growth trajectories by specify
ing the K matrix such that

K ¼ 1 minðtj, kÞ maxðtj − k, 0Þ
� �

, 

where the dimension of the K matrix is J � 3; the first col
umn defines the intercept, and the second and third 

columns respectively define the first and second linear 
slopes that change with time.

For the present investigation, we focus on and account 
for the PGM in its simplest form in Equation (2): Two lin
ear growth trajectories joined at a single knot. Using this 
form of PGM with fixed knot location ensured us to exam
ine the performance of Bayesian model fit and selection 
indices when knot locations could be misspecified, which 
will be detailed later in the section devoted to the simulation 
design. It is possible, however, to construct PGMs in more 
complex formats, for instance, by introducing multiple 
phases of development followed by the inclusion of more 
knots (Flora, 2008) or by including nonlinear growth phases 
(Harring et al., 2021). Corresponding locations of knots can 
be set a priori, freely estimated, or allowed to vary across 
individuals to describe individual differences (Harring et al., 
2021). In addition, Cudeck and Codd (2012) formulated 
PGMs with disjointed knots, opening up potential applica
tions if growth segments are discontinuous.

2.2. Prior Distribution

Specifying prior distributions is an important task for 
Bayesian estimation. Our prior settings are defined within 
the Mplus software (Muth�en & Muth�en, 2017), which was 
the main software used in this paper. There are three types 
of parameters that need prior specifications. First, the mean 
of each latent growth factor in a has its associated normal 
prior distribution:

a � Nðl, r2Þ, 

where l is the mean hyperparameter that determines the 
location of the prior, and r2 is the variance hyperparameter 
that determines the degree of informativeness. Second, the 
covariance matrix Xg between growth factors g0i, g1i, and 
g2i has its inverse Wishart prior distribution:

Xg � IWðW, �Þ, 

where W is a positive definite matrix; and � refers to the 
degrees of freedom. Third, the variances of error terms in 
Xy have corresponding inverse gamma prior distributions:

r2
�ij
� IGða, bÞ, 

where a is the shape hyperparameter; and b the scale hyper
parameter. We present specific prior settings (i.e., hyper
parameter settings) in the section devoted to the simulation 
study.

3. Bayesian Model Fit and Selection Indices

The current section surveys model fit and selection indices 
for evaluating Bayesian PGMs. More indices exist; however, 
the indices introduced here are widely studied in prior stud
ies (e.g., Cain & Zhang, 2019; Depaoli et al., 2023; Edwards 
& Konold, 2023; Winter & Depaoli, 2022a, 2022b). Readers 
are referred to references therein at each subsection for 
more technical details.
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3.1. Information Criteria (BIC and DIC)

Information criteria are model selection indices to select the 
best model that represents observed data among multiple 
competing models. We introduce two information criteria: 
the Bayesian information criterion (BIC; Schwarz, 1978) and 
the deviance information criterion (DIC; Spiegelhalter et al., 
2002). These two selection indices are used to compare 
either nested or non-nested models, and the model with the 
smallest BIC or DIC value is preferred over the others.

Let h denote a vector of parameters, and let y replace yi 
for simplicity. The BIC is the approximation of the Bayes 
factor (Kass & Raftery, 1995) and is formulated as follows:

BIC ¼ −2 log fpðyjĥMLÞg þ k log n, 

where ĥML is the maximum likelihood estimate of h; k is 
the number of parameters in the model; n is the sample 
size; log fpðyjĥMLÞg is the log likelihood based on the max
imum likelihood estimates of h; and k log n is the model 
complexity term that penalizes models with more number 
of parameters.1

The DIC is defined in the following way:

DIC ¼ −2 log fpðyjĥEAPÞg þ 2pD, 

where ĥEAP is the posterior mean of h, used to define the 
term log fpðyjĥEAPÞg that evaluates the log likelihood; and 
pD is an estimate of the effective number of parameters. 
This latter term, pD, is the model complexity term that is 
computed in the following formulation:

pD ¼ 2ð log fpðyjĥEAPÞgÞ − EpðhjyÞ log fpðyjhÞg
� �

, 

where, on the right side, the second term 
EpðhjyÞ½log fpðyjhÞg� refers to the average log likelihood over 
the posterior distribution of h:

Within the Bayesian estimation framework, prior distri
butions should be specified by adjusting the hyperparameter 
values. These values can be determined either through fixed 
numbers or distributional forms. Using distributions to 
probabilistically sample hyperparameter values introduces 
additional parameters for the specification of such distribu
tions. This process can complicate the Bayesian analyses by 
inflating the number of parameters for any given model. A 
key distinction between the BIC and DIC lies in their treat
ment of counting those parameters. The BIC considers all 
the parameters either for the model or for priors, which can 
over-penalize the model complexity. In contrast, the DIC 
can be formulated to include only the effective number of 
parameters, as determined by researchers. Therefore, the 
DIC has advantages in handling a large number of parame
ters (see also Asparouhov et al., 2015).

3.2. Posterior Predictive p-Value (PPP-Value)

If a model fits observed data well, future observations pre
dicted from the model should be similar to the observed 
data. The PPP-value is the model fit index that is based on 
such idea; hence, we simulate future data from the distribu
tion called the posterior predictive distribution and compare 
the future data to the observed data. The posterior predictive 
distribution is the probability density that future observations 
are expected to arise from and can be written as follows:

pðyrepjyÞ ¼
ð

pðyrepjhÞpðhjyÞdh, 

where yrep denotes future data or replicated data; and pðhjyÞ
is the posterior distribution.

The procedure of sampling from the posterior predictive 
distribution is based on the MCMC methods. At each iter
ation s, sampled hðsÞ is imputed in pðyrepjhÞ to simulate each 
replicated dataset of the same size as the observed data, and 
this sampling scheme is performed iteratively. The resulting 
multiple replicated datasets should be compared to the 
observed data to test if each pair of replicated data and 
observed data has resemblance to each other. A discrepancy 
function—a function of data and parameters—is used to 
evaluate and compare model fit to replicated versus observed 
data between the estimated model M0 and the unconstrained 
model M1 (Muth�en, 2010). The most commonly used dis
crepancy function is the likelihood ratio test (LRT) chi- 
square, which has been formulated in Mplus as follows 2:

Dð�Þ ¼ Dðy, l1, R1, l0, R0Þ ¼ Lðyjl1, R1Þ − Lðyjl0, R0Þ,
(3) 

where the subscripts 1 and 0 of l and R respectively corres
pond to M1 (i.e., unconstrained model) and M0 (i.e., esti
mated model); Lðyjl1, R1Þ is the log likelihood of y based 
on the multivariate normal distribution with mean l1 and 
the covariance matrix R1; and Lðyjl0, R0Þ refers to the log 
likelihood defined in the same way using l0 and R0: The 
discrepancy function in Equation (3) for the observed data 
is then expressed as:

Dð�Þobs
s ¼ Dobs

s ðy
obs, l1, sðyobsÞ, R1, sðyobsÞ, l0, s, R0, sÞ, 

where l1, sðyobsÞ and R1, sðyobsÞ refer to a random draw of 
the M1 parameter estimates for yobs at iteration s; and l0, s 
and R0, s refer to the M0-implied mean and covariance 
matrix obtained from the M0 at iteration s. In a similar 
vein, the discrepancy function for the replicated data is:

Dð�Þrep
s ¼ Drep

s ðy
rep, l1, sðyrepÞ, R1, sðyrepÞ, l0, s, R0, sÞ, 

where l1, sðyrepÞ and R1, sðyrepÞ indicate a random draw of 
the M1 parameter estimates for yrep at iteration s. Both 

1We provide two cautionary notes for our readers. First, when we use the 
term “Bayesian model selection indices”, we are referring to both the BIC and 
DIC, not just the BIC alone. Second, the computation of the BIC relies on the 
maximum likelihood estimates of the parameters. That said, the BIC cannot be 
considered a purely “Bayesian measure” given that its specification is not 
based on the posterior distribution (Gelman et al., 2014). However, we 
included the BIC in the current investigation because (1) it is provided as 
default in Mplus when using the Bayesian estimation framework, and (2) its 
performance was investigated in previous studies on Bayesian model 
evaluation (Depaoli et al., 2023; Winter & Depaoli, 2022a, 2022b).

2As of Mplus version 8.4, missing values remain missing when computing the 
discrepancy function (see Asparouhov & Muth�en, 2021). The replicated data 
generated at each iteration using the incomplete observed data mimics the 
missing data patterns. The same missing data patterns between the observed 
and replicated data ensure the comparability of both data under the null 
hypothesis that M0 is true. In addition, Asparouhov and Muth�en (2021) 
pointed out that replicated data can be considered MAR under the 
assumption that the actual data is MAR. Therefore, comparability of the 
discrepancy function for the observed and replicated data is ensured.
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discrepancy function terms—Dð�Þobs
s and Dð�Þrep

s —are used 
to calculate the PPP-value:

PPP-value ¼ pðDð�Þrep
s > Dð�Þobs

s jyÞ �
1
S

XS

s¼1
ds, (4) 

where S is the number of iterations of the chain; and ds is 
realized based on the following condition:

ds ¼
1 if Dð�Þrep

s > Dð�Þobs
s ,

0 otherwise:

(

The PPP-value in Equation (4) is interpreted as the pro
portion of replicated datasets whose discrepancy statistics 
exceed discrepancy statistics applied to the observed data. 
PPP-values of 0.5 indicates a good model fit to the data, 
meaning 50% of replicated datasets have discrepancy statis
tics greater than those of the observed data. Extremely low 
PPP-values close to 0 indicate model misspecification, sig
naling most of replicated datasets have greater discrepancy 
statistics compared to those of the observe data. A common 
practice is to use .05 as a cutoff criterion such that PPP-val
ues >.05 indicate adequate model fit (Asparouhov & 
Muth�en, 2010).

3.3. Bayesian Approximate Fit Indices

Three approximate fit indices—the root mean square error 
of approximation (RMSEA), the comparative fit index 
(CFI), and the Tucker-Lewis index (TLI)—have been 
recently implemented within the Bayesian scheme 
(Asparouhov & Muth�en, 2021; Garnier-Villarreal & 
Jorgensen, 2020; Hoofs et al., 2018). These indices depend 
on the calculation of the PPP-value and are computed at 
each iteration s of the Markov chain, resulting in the poster
ior distributions of each fit index.

Bayesian RMSEA (BRMSEA) evaluates the badness-of-fit 
such that it measures the extent to which a hypothesized 
model deviates from the perfect model in capturing 
observed data; hence is also referred to as the absolute fit 
index. BRMSEA is calculated as follows:

BRMSEAs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxð0,
Dð�Þobs

s − p�

ðp� − pDÞn
Þ

s

, 

where Dð�Þobs
s is the discrepancy function for the observed 

data at iteration s; and p� is the number of nonredundant 
sample moments. BRMSEA captures model misfit as the 
rescaled discrepancy at iteration s and produces realized val
ues that are chi-square distributed (see Garnier-Villarreal & 
Jorgensen, 2020).

Bayesian CFI (BCFI) and Bayesian TLI (BTLI) are incre
mental fit indices such that they evaluate the relative 
improvement of the fit of the target model along a con
tinuum between the baseline model (i.e., all covariances are 
fixed to 0) and the saturated model. Indices that take on 
values near 0 indicate that the target model does not fit the 
data well compared to the baseline model; indices with val
ues closer to 1 indicate that the target model shows good fit 
to the data compared to the baseline model. BCFI is 

formulated as follows:

BCFIs ¼ 1 −
Dð�Þobs

T, s − p�

Dð�Þobs
B, s − p�

, 

where Dð�Þobs
T, s refers to the target model discrepancy func

tion for the observed data at iteration s; and Dð�Þobs
B, s refers 

to the baseline model discrepancy function for the observed 
data at iteration s. BTLI, on the other hand, is computed in 
the following way:

BTLIs ¼

Dð�Þobs
B, s−pDB

p�−pDB
− Dð�Þobs

T, s−pDT
p�−pDT

Dð�Þobs
B, s−pDB

p�−pDB
− 1

, 

where pDB is the model complexity term defined for the 
baseline model; and pDT is the model complexity term 
defined for the target model.

4. The Impact of Model Misspecification

Within the framework of piecewise growth modeling, a 
model can be misspecified in either the mean structure or 
the covariance structure (Depaoli et al., 2023; Leite & 
Stapleton, 2011; Ning & Luo, 2017). While multiple sources 
of misspecification are possible within either structure, we 
particularly focus on the mean structure, which can be 
teased into misspecification in growth trajectories (latent 
means) and knot locations in more detail to look into mis
specification scenarios in PGMs. An example of a misspeci
fied growth trajectory is to fit a linear growth model when 
the true model reflects piecewise growth patterns. A misspe
cified knot location arises when knot locations are specified 
to time points that are different from true changepoints. 
These sources of misspecification impact how model fit and 
selection indices perform to detect model misfit.

Misspecification in the mean and covariance structures 
mostly received attention in the literature on latent growth 
modeling. A general finding is that frequentist RMSEA, CFI, 
and TLI were more sensitive to the misspecified mean struc
ture compared to the misspecified covariance structure (Wu 
et al., 2009; Wu & West, 2010), and both sources of misspe
cification are intertwined with each other (Wu et al., 2009). 
Between the three frequentist indices, RMSEA was better at 
detecting model misfit compared to CFI and TLI (Yu, 
2002). These patterns were similarly observed in Bayesian 
literature in that BCFI and BTLI were not sensitive to 
detecting model misspecification (Winter & Depaoli, 2022b). 
Compared to these two Bayesian approximate fit measures, 
the PPP-value could detect misspecified mean and covari
ance structures (Fay et al., 2022; Winter & Depaoli, 2022b). 
Winter and Depaoli (2022b) additionally observed that DIC 
was more likely to favor the correctly specified models 
than BIC.

Because PGMs are extensions of latent growth models, 
comparable observations have been found on the perform
ance of model assessment measures. For instance, Leite and 
Stapleton (2011) examined the performance of frequentist 
approximate fit indices when a PGM was misspecified in 
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the mean and the covariance structures. Whereas CFI and 
TLI were more sensitive to the misspecified mean structure 
than the misspecified covariance structure, both indices 
were insensitive to the sample size or the severity of misspe
cification and retained most of the misspecified model. 
RMSEA, however, performed better than CFI and TLI in 
detecting misspecified models.

Another source of misspecification in PGMs is knot loca
tions, which was examined by Ning and Luo (2017). Their 
true models were linear-linear PGMs with knot locations 
specified at time point 3, 3.5, 4, or 5. By fixing the location 
of knot of the analysis model at time point 3, they had 
either correctly specified model or misspecification of either 
0.5, 1, or 2 time points. They found that frequentist 
RMSEA, CFI, and TLI did not perform well in detecting 
misspecified knot locations irrespective of sample sizes and 
the severity of misspecifications.

The poor performances of approximate fit indices were 
also found within the Bayesian context. In particular, 
Depaoli et al. (2023) misspecified knot locations as well as 
growth trajectories. There were three data-generating mod
els, all of which were linear-linear PGMs with their knot 
locations fixed at time point 4. The only difference between 
the three models was the magnitude of the change in the 
second growth trajectory, which was small, medium, or 
large based on effect sizes. The analysis model, on the other 
hand, was either a correctly specified model or three mis
specified models such that the true knot location was 
ignored or misspecified at time points 3 or 5. Consistent 
with Fay et al. (2022) and Winter and Depaoli (2022b), the 
PPP-value could reliably detect model misspecifications for 
larger sample sizes and for a larger change in the second 
growth phase. However, BCFI, BTLI, and BRMSEA showed 
unreliable performance in detecting misfit. Between BIC and 
DIC, BIC could not pinpoint severe misspecifications with 
ignored knots from the true model for smaller sample sizes, 
indicating the outperformance of DIC.

It is evident from the literature that model misspecifica
tion can influence the performance of various model evalu
ation tools. We highlight that missing data is another 
critical factor that may have substantial consequences in 
detecting model misfit. In the next section, we focus on 
model evaluation issues surrounding missing data.

5. The Impact of Missing Data

The presence of missing data in longitudinal studies is 
attributable to many reasons; for example, missingness is 
planned by study design (Rhemtulla et al., 2014; Wu & Jia, 
2021), or participants drop out of a study at the midway 
point (Nicholson et al., 2017; Twisk & de Vente, 2002). The 
latter scenario, called attrition, is a typical pattern of longi
tudinal missing data and is our focus.

Literature on the impact of missing data on model fit 
and selection indices is scarce, particularly when it comes to 
the PGM, regardless of being frequentist or Bayesian. In the 
frequentist latent growth modeling literature, Shi et al. 
(2021) studied the performance of fit indices in the presence 

of missing data in a linear latent growth model. They 
manipulated the percentage of MCAR or MAR data by 
imposing either 0%, 10%, or 30% of missingness. Their 
results showed that frequentist RMSEA and CFI could not 
detect a correct model, although RMSEA was slightly better 
at detecting model misfit than CFI. Importantly, worsened 
performance of these indices was observed for smaller sam
ples or increasing amounts of missing data.

The negative impact of increasing amounts of missing 
data on model assessment measures was similarly observed 
within the Bayesian latent growth modeling literature. 
Winter and Depaoli (2022b) focused on a quadratic model 
and differed the amount of missing data by either 0%, 15%, 
or 50% based on the MAR assumption. According to their 
results, the ability of the PPP-value to detect misspecifica
tion decreased when the amount of missing data increased. 
BCFI and BTLI showed a similar pattern as the PPP-value 
in that the performance of these two Bayesian fit indices 
was slightly aggravated when the amount of missing data 
increased. BRMSEA, on the other hand, was relatively not 
affected by the presence of missing data except for a condi
tion where 50% of missing data existed. In addition, 
Bayesian model selection indices were under the influence 
of the amount of missing data. The percentage of incorrectly 
favoring misspecified models according to the BIC and DIC 
values increased when the amount of missing data was 
larger (see Celeux et al., 2006, for explanations of poor per
formance of DIC in the presence of missing data).

We note the scarcity of research investigating the impact 
of missing data on the performance of model fit and selec
tion indices in Bayesian PGMs, which reaffirms the impor
tance of our current investigation. Uncovering this 
unexplored area will contribute to a more complete under
standing of the issues related to model evaluation for 
Bayesian piecewise growth modeling.

6. A Simulation Study

We conducted a Monte Carlo simulation study to evaluate 
the performance of Bayesian model fit and selection indices 
in Bayesian PGMs. Specifically, we examined how model 
misspecification and missing data affect these indices under 
different prior specifications. We implemented the simula
tion study with a fully crossed factorial design with four fac
tors: sample sizes (3 levels), missing data (7 levels), knot 
placement (4 levels), and prior specifications (3 levels), 
resulting in a total of 252 cells. The details of the simulation 
design, including the population model, are described in the 
subsequent paragraphs.

6.1. The Population Model

Our data-generating model was a linear-linear PGM with 
seven repeated measurements. The location of the knot was 
at the fourth time point (k¼ 3). Population parameter val
ues were determined following Depaoli et al. (2023). We 
present the path diagram in Figure 1. The mean of the 
second slope factor reflects a large change after the first 
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slope based on the standardized effect size calculation 
(Cohen, 2002; Raudenbush & Liu, 2001).

6.2. Sample Size

Sample size is known to be an important factor that affects 
the performance of Bayesian model fit and selection indices 
(e.g., Asparouhov & Muth�en, 2021; Cain & Zhang, 2019; 
Depaoli et al., 2023; Garnier-Villarreal & Jorgensen, 2020; 
Shi et al., 2019; Winter & Depaoli, 2022a, 2022b). We 
included the following levels of the sample size condition: 
50 (small), 150 (medium), and 500 (large). This range of 
sample sizes is based on Winter and Depaoli (2022b) and 
covers sample sizes typically encountered in longitudinal 
studies.

6.3. Missing Data

We considered missing data conditions in terms of the pat
tern and proportion of missing values. First, the missingness 
followed attrition patterns: The presence of missing values 
at a certain time point guaranteed missing values at subse
quent time points (Nicholson et al., 2017; Twisk & de 
Vente, 2002). We modeled the probability of attrition across 
repeated measurements using either linear or quadratic 
functions (Ortega-Azurduy et al., 2008). Whereas a linear 
function represents a constant increase of missing values 
across repeated measurements, a quadratic function can 
express either an accelerated increase (i.e., missing values 
concentrated at the end of the study) or a decelerated 
increase (i.e., missing values concentrated at the start of the 
study) of missing values. Second, the proportion of missing 
values was set at 0% (i.e., no missing values), and 30%, or 
70% missingness at the last time point. These proportions 
were determined based on studies by Gustavson et al. 

(2012) and Wu et al. (2016) to mirror typical amount of 
missing data in longitudinal studies.

This ended up with 7 missing data conditions: no miss
ing values (Complete), missing values concentrated at the 
start of the study with 30% in the end (Concen-S-30), miss
ing values at a constant increase with 30% in the end 
(Constant-30), missing values concentrated at the end of the 
study with 30% in the end (Concen-E-30), missing values 
concentrated at the start of the study with 70% in the end 
(Concen-S-70), missing values at a constant increase with 
70% in the end (Constant-70), and missing values concen
trated at the end of the study with 70% in the end (Concen- 
E-70). Figure 2 describes three levels of the missing data 
condition where 70% of data are missing at the last time 
point (i.e., Concen-S-70, Constant-70, and Concen-E-70). 
Another plot that contains other three levels with 30% miss
ing data at the last time point is available as Online 
Supplementary Material3.

We used the following formula to determine the propor
tion of missing data at each time point (tj ¼ 0, 1, … , 6):

−
5
6
ðtj − 6Þ2 þ 30 if Concen � S-30;

5tj if Constant-30;
5
6

t2
j if Concen � E-30;

−
35
18
ðtj − 6Þ2 þ 70 if Concen � S-70;

35
3

tj if Constant-70;
35
18

t2
j if Concen � E-70:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

(5) 

Figure 1. A population model.

3Online Supplementary Materials are available at the Open Science Framework 
project (https://osf.io/agn4x/).
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We then used logistic regression (e.g., Agresti, 2012) to 
determine the missing data indicator (Rij) of individual i at 
occasion j based on the standardized score at the first meas
urement occasion to satisfy the MAR assumption:

pðRij ¼ 1jzi1Þ ¼
eb0, jþb1zi1

1þ eb0, jþb1zi1
, (6) 

where zi1 refers to a standardized yi1: In Equation (6), the 
intercept b0, j determines the amount of missing data at 
occasion j, and the slope b1 indicates the relationship 
between the standardized predictor and the probability of 
missingness. We first chose a slope coefficient b1 in a way 
that a squared correlation of 0.40 is produced; this way, we 
ensured a sufficiently strong relationship between the cause 
of missingness and the underlying probability for missing 
data (e.g., Enders & Mansolf, 2018; Winter & Depaoli, 
2022b). Next, we determined an intercept b0, j to obtain the 
desired proportion of missing data at each time point. 
Using the slope and intercept values determined, we used a 
logit link to produce a vector of probabilities. These proba
bilities were used as success probabilities of a binomial dis
tribution to obtain missing data indicators. If the indicators 
were equal to 1, existing values were removed to treat them 
as missing values. This process was repeated to reach the 
desired proportions of missing data across all missing data 
conditions.

6.4. Knot Placement

We included 4 levels of knot placement to represent either 
correctly specified or misspecified location of knots. In the 
analysis model, we placed knot at the true location (i.e., 
fourth time point), one time point before the true location 
(i.e., third time point), one time point after the true location 
(i.e., fifth time point); or we completely ignored knot. Knot 
placement at the true location reflects correct knot place
ment, but the other three levels represent misspecified knot 
placement. Ignoring knot placement means fitting linear 
growth models instead of PGMs.

6.5. Prior Specification

To understand the prior sensitivity of the performance of 
Bayesian model fit and selection indices, 3 levels of different 
prior specifications were included: (1) diffuse prior; (2) 
informative prior put at the accurate location (informative- 
accurate prior); and (3) weakly informative prior put at the 
inaccurate location (weakly informative-inaccurate prior). In 
all levels, we only differed the priors put on the mean of the 
latent growth factors; hence, we manipulated values of the 
mean and variance hyperparameters of the normal prior.

For explanatory purposes, let the subscripts of each 
hyperparameter refer to the corresponding growth factors; 
for instance, l0 and r2

0 respectively refer to the mean and 
the variance hyperparameters of the normal prior of the 
intercept. For the diffuse prior, we used the default prior 
setting in Mplus: l0 ¼ l1 ¼ l2 ¼ 0 and r2

0 ¼ r2
1 ¼ r2

2 ¼

1010: For the informative-accurate prior, the mean hyper
parameters were equal to true population values (i.e., l0 ¼

2:5; l1 ¼ 0:5; and l2 ¼ 0:75), and the variance hyperpara
meters were 10% of the true population means (i.e., r2

0 ¼

0:25; r2
1 ¼ 0:05; and r2

2 ¼ 0:075). For the weakly inform
ative-inaccurate prior, the mean hyperparameters were 
shifted upward by adding 3 times the square root of the 
variance hyperparameters (i.e., l0 ¼ 4; l1 ¼ 1:171; and 
l2 ¼ 1:572), and the variance hyperparameters were 50% of 
the true population means (i.e., r2

0 ¼ 1:25; r2
1 ¼ 0:25; and 

r2
2 ¼ 0:375). For the other parameters than the mean of the 

growth factors, the default prior specifications in Mplus 
were used.

6.6. Software and Bayesian Estimation

We used the R lavaan package (Rosseel, 2012) for data 
generation with 1,000 replications per cell, and used Mplus 
version 8.6 (Muth�en & Muth�en, 2017) for Bayesian estima
tion. We implemented the Gibbs sampler to generate two 
MCMC chains each consisting of 20,000 iterations, with a 
thinning interval of 1. The first 10,000 iterations in each 
chain were discarded as the burn-in period of the chain. We 

Figure 2. Attrition pattern when 70% of data are missing.
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inspected R̂ convergence diagnostics to assess chain conver
gence (Vehtari et al., 2021), with their values <1.05 as a cut
off (e.g., Depaoli et al., 2023).

6.7. Outcomes of Interest

To evaluate the performance of Bayesian model fit and 
selection indices, we first extracted values of the following 
Bayesian model fit indices: the PPP-value, BRMSEA, BCFI, 
and BTLI across all the simulation conditions. We also 
extracted the 90% credible intervals (CIs) of the three 
Bayesian approximate fit indices (i.e., BCFI, BTLI, and 
BRMSEA) to assess their sensitivity to model misspecifica
tion and missing data. Depending on where the entire 90% 
CIs are located based on the cutoff values, we categorized 
either conclusively good, inconclusive, or conclusively poor 
model fit. For a conclusively good model fit, the entire 90% 
CIs is below .06 for BRMSEA and above .95 for BCFI and 
BTLI; for an inconclusive model fit, the cutoff values are 
included within the 90% CIs; and for a conclusively poor 
model fit, the entire 90% CIs fall on the other side of the 
cutoff values. We expect to observe higher rates of a good 
model fit when the model was correctly specified and when 
the presence of missing data has no adverse effects; on the 
other hand, higher rates of a poor model fit will be obtained 
if the model fit indices are sensitive to model misspecifica
tion and missing data. For Bayesian model selection indices 
(i.e., BIC and DIC), we calculated the proportion of replica
tions that favored the correctly specified model over misspe
cified models. The difference in values of both information 
criteria was also calculated. If these two model selection 
indices are sensitive to detecting misspecified models and 
are not affected by missing data, the proportion of favoring 
the correctly specified model is expected to be higher.

7. Results

The percentage of replications that converged, with R̂ diag
nostics over all parameters less than 1.05, ranged from 
81.4% to 100% (mean ¼ 97.1% and median ¼ 99.5%). The 
choice of priors did not substantially impact the conver
gence rates. For each of the diffuse, informative-accurate, 
and weakly informative-inaccurate priors, the mean percent
age of converged replications were 97.2%, 97.4%, and 96.7%, 
respectively. We report replications with converged results. 
We also observed very similar results between the BCFI and 
BTLI; therefore, we only present the BCFI results to save 
space. Full results including BTLI can be accessed online as 
Supplementary Material.

7.1. Assessing Model Fit Using Index Values

Well-performing model fit indices should alarm model mis
fit if models were misspecified. We created boxplots in 
Figures 3–5 to evaluate the performance of Bayesian model 
fit indices based on index values. These figures have rows 
that represent sample sizes and columns that correspond to 
each level of the missing data condition. In addition, the x- 

axis represents prior specifications, and the y-axis indicates 
values of the model fit indices. Four grouped boxes within 
each prior specification condition correspond to either cor
rectly specified or misspecified models.

7.1.1. PPP-Value
Figure 3 shows results for the PPP-value. There are two 
lines in each boxplot. The solid horizontal line represents 
the PPP-value of 0.5 that indicates a good fit; the dashed 
horizontal line, on the other hand, represents the PPP-value 
of 0.05, which is a usual cutoff for a poor model fit.4 The 
PPP-value performs well when the PPP-values of correctly 
specified models hover around 0.5, and those of the other 
misspecified models are centered around or below 0.05.

We first focus on conditions when there were no miss
ing values (i.e., the first column). When n¼ 50, the PPP- 
value could not detect model misspecification because every 
model fitted the data well. When the sample size increased 
from 50 to 150, the PPP-values from the correct model 
specification hovered around 0.5, meaning the PPP-value 
could detect correctly specified models. For misspecified 
models, the PPP-value could reliably detect the severely 
misspecified models (i.e., ignored knot), but it could not 
detect the misspecification in terms of knot misplacement. 
When n¼ 500, the PPP-value performed well in detecting 
model misspecification in that the PPP-values of the cor
rectly specified model were centered at 0.5, and those of 
the other misspecified models were close to or even lower 
than 0.05. Under this condition, all forms of model misspe
cification could be correctly detected. When there were 
30% of missing values (i.e., columns 2–4), we observed that 
the performance of the PPP-value worsened, even for the 
largest sample size condition: For n¼ 500, the PPP-values 
became unreliable because those of misplaced knots 
approached 0.5 whereas they could still detect severe mis
specification. When the amount of missing data was 70% 
(i.e., the fifth through the seventh column), the perform
ance of the PPP-value was even more aggravated compared 
to the 30% of missing data conditions. The PPP-value 
could still detect misspecified models with the ignored knot 
when n¼ 500, with an increased number of outliers toward 
0.5; on the other hand, the PPP-value could not detect mis
placed knots. We also found that, when missing values 
were concentrated at the start of the study, the PPP-values 
of misspecified models deviated more from 0.05 and shifted 
toward 0.5. This indicates that having a lot of missing data 
in the beginning stages of the study can worsen the per
formance of the PPP-value. Finally, across all the simula
tion conditions, distributions of the PPP-values were not 
different across different prior specifications. This pattern 
reveals that different prior distributions have little impact 
on the performance of the PPP-value.

4We highlight that this value is not a strict cutoff; nor should it be. We are 
not advocating for implementation of frequentist cutoffs for these Bayesian 
indices. Instead, the use of cutoff values is rather to facilitate the intuitive 
interpretation of results that represents the likely way the indices will be used 
and interpreted in practice. We take this approach in interpreting the other 
Bayesian model fit indices as well.
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7.1.2. BCFI (and BTLI)
We present results for the BCFI in Figure 4. There is one 
solid horizontal line at 0.95 in all boxplots, and this is a cut
off to determine a good model fit for the BCFI and BTLI. If 

values of the BCFI and BTLI �0.95, a model shows a good 
fit to the data. We additionally note that we modified the 
range of the y-axis from 0.6 to 1 to enhance the interpret
ability of the findings. The BCFI and BTLI are considered 

Figure 3. The PPP-value across simulation conditions.

Figure 4. The BCFI across simulation conditions. The range of the y-axis is set from 0.6 to 1 to enhance the interpretability of the results across simulation 
conditions.
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well-performing in detecting model misspecification when 
boxplots are located below 0.95 for misspecified models 
only.

Overall, the BCFI did not exhibit reliable performance in 
detecting misspecified models. When there were no missing 
data, the BCFI could only detect models with the ignored 
knot when n¼ 500. When the amount of missing data 
increased to 30%, the ability of the BCFI in detecting mis
specified models with the ignored knot started to be wors
ened even when the sample size was 500. When 70% of data 
were missing, the BCFI became a completely unreliable 
measure to detect model misspecification regardless of sam
ple sizes. These patterns were more severe when missingness 
was concentrated at the beginning. These findings indicate 
that the BCFI is vulnerable to missing data. In addition, the 
performance of the BCFI showed no much difference across 
prior specifications.

7.1.3. BRMSEA
We display results for the BRMSEA in Figure 5. All box
plots contain a solid horizontal line at .06 as a cutoff to 
determine whether a model fits data well or not: BRMSEA 
values �0.06 indicate a good model fit. If the BRMSEA per
forms well in detecting model misspecification, boxplots of 
misspecified models should be located above .06 whereas 
those of the correctly specified model below 0.06.

Our findings suggested that the BRMSEA was not a reli
able measure to detect model misspecification. When data 
were complete, the BRMSEA obviously detected misspecified 
models with the ignored knot when the sample size was 150 
or 500; still, models with misplaced knot locations could be 

detected. When the amount of missing data was 30%, the 
BRMSEA lost its ability to clearly detect misspecified models 
that ignored knot. Between three different attrition patterns, 
no difference was observed in the performance of the 
BRMSEA. When the percentage of missing data was 70%, 
the BRMSEA could not identify either correctly or misspeci
fied models regardless of sample sizes, with this pattern 
being extreme when missing data arise in the early stages of 
the time points. As was the case with the BCFI (and BTLI), 
the little impact of different prior specifications was 
observed across all the simulation conditions.

7.2. Assessing Model Fit Using 90% CIs

Another method to assess model fit is to use 90% CIs for 
Bayesian approximate fit indices. Using CIs considers the 
whole posterior distributions instead of point estimates so 
that we can see plausible values of fit indices. We labeled 
three categories—good (conclusive), inconclusive, or poor 
(conclusive)—to classify fit and created stacked bar plots in 
Figures 6 and 7. Within each figure, there is a multitude of 
stacked bar plots. The rows represent sample sizes, the col
umns correspond to each level of the missing data condi
tion, the x-axis represents model specifications, and the y- 
axis refers to the proportion of replications that belong to 
either conclusively good, inconclusive, or conclusively poor 
classification. Model fit is classified as conclusively good if 
the entire 90% CI is located within the” good” range, such 
that BCFI �0.95, BTLI �0.95, or BRMSEA �0.06. Model fit 
is defined conclusively poor if the corresponding 90% CI 
belong to BCFI <0.95, BTLI <0.95, or BRMSEA >0.06. 

Figure 5. The BRMSEA across simulation conditions.
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Model fit is classified as inconclusive when the interval con
tains the cutoff value. In our initial analysis, results showed 
little difference across different prior specifications; thus, we 
collapsed results across prior specification conditions.

7.2.1. BCFI (and BTLI)
Figure 6 showcases classification based on the 90% CIs of 
the BCFI. When there were no missing data, most classifica
tions were either inconclusive or conclusively poor with 

Figure 6. Classification based on the 90% credible interval of BCFI across simulation conditions.

Figure 7. Classification based on the 90% credible interval of BRMSEA across simulation conditions.
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n¼ 50. As sample size increased, we observed a higher pro
portion of replications classified as conclusively good. For 
n¼ 500, almost all replications for the true model were clas
sified as conclusively good; however, misspecified models 
with misplaced knots were also classified as conclusively 
good. The ignored knot condition, on the other hand, still 
retained higher rates of replications classified as conclusively 
poor. This overall pattern was observed across the other lev
els of the missing data condition. For conditions with 70% 
of missing data, even a higher percentage of replications 
falsely classify misspecified models as conclusively good; 
such a pattern was worse when missing values were concen
trated at the beginning. Based on these findings, using 90% 
CIs of BCFI did not work in reliably detecting model misfit.

7.2.2. BRMSEA
Results of the 90% CIs of the BRMSEA are displayed in 
Figure 7. The global pattern was similar to that of the BCFI 
(and BTLI). However, we focus on some aspects to highlight 
observed differences. When there were no missing data, a 
higher percentage of replications was classified as inconclusive 
for misspecified models with misplaced knots when n¼ 500, 
compared to the BCFI. When data consisted of 70% of miss
ing values, more replications were wrongly classified as con
clusively good for the misspecified model with the ignored 
knot. This indicates that the BRMSEA cannot detect severe 
model misspecification in the presence of a large amount of 
missing data. Overall, the use of 90% CIs of BRMSEA did not 
perform well to detect model misspecifications.

7.3. Assessing Model Selection

Successful model selection should lead to selecting the correctly 
specified model over misspecified models. We created Tables 1
and 2 to evaluate the performance of Bayesian model selection 
indices based on values of the BIC and DIC. Seven main hori
zontal blocks represent the levels of the missing data condition, 
and three main vertical blocks compare the true model to three 
misspecified models, respectively. Within each block, rows rep
resent sample sizes, and columns correspond to three different 
prior specifications. The numbers in the table reflect both selec
tion rates and differences in the information criteria. First, each 
number represents the percentage of replications where the 
true model was preferred over one of the misspecified models 
based on values of the information criteria. Second, we bold- 
faced each number if an average of differences in the informa
tion criteria between the true model and one of the misspeci
fied models is greater than 5. This way we provide how many 
replications preferred the true model and whether such prefer
ences are supported by a bigger magnitude of differences.

7.3.1. BIC
Table 1 displays selection rates for the BIC. Across all miss
ing data conditions, there was a general pattern that selec
tion rates were higher when the true model was compared 
to misspecified models with misplaced knots than the mis
specified model with the ignored knot. We also detected the 
effect of sample sizes such that the selection rates increased 
as sample sizes became larger, accompanied by larger dis
crepancies in information criteria. When the amount of 

Table 1. Selection rates of the BIC: a comparison between the true model and misspecified models.

True model vs. one-point earlier True model vs. one-point later True model vs. ignored KNOT

n DIF I-A WI-INA DIF I-A WI-INA DIF I-A WI-INA

Complete
50 71.7 71.8 71.7 66.3 66.1 66.8 12.7 12.8 12.6
150 87.2 87.2 87.2 85.5 85.5 85.5 56.7 56.7 56.5
500 97.5 97.5 97.5 97.4 97.4 97.4 100.0 100.0 100.0

Concen-S-30
50 63.4 63.7 63.4 62.5 62.4 63.2 5.4 5.4 5.3
150 80.9 81.0 80.9 81.5 81.6 81.6 35.9 36.2 35.9
500 97.5 97.5 97.5 95.2 95.2 95.2 98.4 98.4 98.4

Constant-30
50 68.0 68.5 67.8 66.5 66.6 67.5 7.0 7.1 7.0
150 83.1 83.4 83.1 82.0 82.0 82.1 38.2 38.3 38.2
500 96.6 96.6 96.6 96.9 96.9 96.8 99.2 99.2 99.2

Concen-E-30
50 68.2 68.3 68.0 66.1 66.2 66.8 7.3 7.5 7.4
150 81.4 81.3 81.3 84.5 84.5 84.5 41.8 41.8 41.8
500 97.4 97.4 97.4 97.6 97.6 97.6 99.6 99.6 99.6

Concen-S-70
50 48.5 52.3 49.3 67.6 65.5 67.7 0.6 0.5 0.6
150 73.4 73.9 73.6 73.7 73.8 74.0 6.8 6.9 6.8
500 93.2 93.2 93.2 88.5 88.7 88.5 60.2 60.3 60.2

Constant-70
50 53.8 56.0 53.2 74.9 73.0 75.2 1.3 1.4 1.3
150 78.1 78.2 77.9 74.5 74.7 74.8 9.2 9.3 9.2
500 93.1 93.1 93.2 92.5 92.4 92.5 76.0 76.3 76.1

Concen-E-70
50 59.0 59.9 58.3 74.6 73.3 75.6 1.8 1.6 1.8
150 78.7 78.7 78.7 81.6 81.6 81.7 15.5 15.5 15.4
500 94.4 94.4 94.3 96.2 96.3 96.2 90.6 90.6 90.6

Note. DIF is the diffuse prior. I-A is the informative-accurate prior. WI-INA is the weakly informative-inaccurate prior. Numbers indicate the percentage of replica
tions that favored the true model over the misspecified model. If the difference in information criteria between the true model and misspecified model was 
greater than 5, numbers were bold.
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missing data increased to 30% (i.e., the second through the 
fourth main horizontal block), selection rates decreased 
across all the conditions. When the amount of missing data 
was 70% (the fifth through the seventh main horizontal 
block), we observed an additional decrease in overall selec
tion rates, indicating the presence of missing data negatively 
affected the performance of the BIC. Here, we noticed that 
when missing data were concentrated at the start of the 
study, selection rates were conspicuously lower compared to 
the other two conditions. We further observed the negligible 
effect of different prior specifications on the performance of 
the BIC across all the conditions.

7.3.2. DIC
Selection rates for the DIC are presented in Table 2. With 
complete data, the DIC could mostly detect models with 
misplaced knots for n¼ 500 and those with the ignored 
knot for n¼ 150 and n¼ 500. As the amount of missing 
data increased to 30% and further to 70%, we found 
decreases in selection rates across all conditions. However, 
when n equaled 500, the DIC still reliably favored the true 
model regardless of different types of model misspecifica
tion. When 70% of data were missing, we noticed that selec
tion rates were considerably lower when missing data were 
concentrated at the beginning of the study compared to the 
other two attrition patterns, particularly when n¼ 50. This 
finding indicates the negative effect of a large amount of 
missing data arising at the start of the study when sample 
sizes are small. Regarding the impact of different prior 

specifications, there were no conspicuous differences 
between prior specification conditions.

7.3.3. Comparison Between BIC and DIC
When the knot was misplaced, the performances between 
these two selection indices in detecting model misfit were 
comparable. However, we found outperformance of the DIC 
over the BIC when the true model was compared to the 
misspecified model with the ignored knot. Particularly, 
when the sample sizes were 50 or 150, the true model selec
tion rates of the DIC were substantially higher than those of 
the BIC. These patterns were observed across different miss
ing data conditions. The DIC is thus preferred to the BIC in 
detecting a severe form of model misspecification.

8. A Secondary Simulation Study

The population model in the simulation setups described 
earlier was a linear-linear PGM with a single knot. Yet, it is 
important to acknowledge the possibility of utilizing more 
complex PGMs. One potential avenue is a PGM with mul
tiple knots to capture transitions between more than just 
two distinct growth phases (e.g., Chung et al., 2017; Harring 
et al., 2021; Kroese et al., 2013). To explore the performance 
of Bayesian model evaluation tools in more complex piece
wise growth modeling scenarios, we carried out a secondary 
simulation study using a linear-linear-linear PGM with two 
knots as a data-generating model. To maintain conciseness 
in the design of this secondary simulation study, we 

Table 2. Selection rates of the DIC: a comparison between the true model and misspecified models.

True model vs. one-point earlier True model vs. one-point later True model vs. ignored knot

n DIF I-A WI-INA DIF I-A WI-INA DIF I-A WI-INA

Complete
50 70.1 68.7 69.4 64.7 64.4 65.2 62.3 65.1 63.2
150 86.5 86.5 86.5 85.1 85.1 85.1 98.3 98.3 98.3
500 97.5 97.5 97.5 97.3 97.3 97.3 100.0 100.0 100.0

Concen-S-30
50 65.6 64.9 65.0 60.5 59.1 60.8 52.4 56.1 52.9
150 80.6 80.2 80.5 81.0 80.9 81.2 93.1 93.5 93.1
500 97.0 97.0 97.0 95.3 95.3 95.3 100.0 100.0 100.0

Constant-30
50 69.0 69.0 68.8 63.7 62.8 63.9 56.6 60.3 57.3
150 83.4 83.3 83.4 82.1 81.5 82.2 95.4 95.6 95.4
500 96.6 96.6 96.6 97.0 96.9 96.9 100.0 100.0 100.0

Concen-E-30
50 70.2 69.5 69.7 63.5 62.0 63.7 57.3 62.1 57.9
150 81.9 81.8 81.9 83.2 82.9 83.2 95.3 95.4 95.3
500 97.1 97.1 97.1 97.6 97.6 97.6 100.0 100.0 100.0

Concen-S-70
50 59.3 60.5 58.3 59.8 55.7 60.7 36.4 42.4 36.4
150 75.1 75.2 75.1 69.9 69.2 69.9 72.5 74.8 72.2
500 92.4 92.5 92.3 88.9 88.9 88.8 99.5 99.5 99.5

Constant-70
50 61.1 62.2 60.2 65.2 63.1 65.5 41.6 46.9 41.7
150 79.1 79.1 78.8 71.4 70.1 71.6 79.6 80.9 79.3
500 92.9 92.9 92.9 92.4 92.3 92.6 99.9 99.9 99.9

Concen-E-70
50 65.9 66.6 65.0 65.2 62.3 65.2 45.2 50.8 45.6
150 80.1 80.1 79.9 77.4 76.8 77.2 87.7 88.1 87.6
500 93.6 93.6 93.5 96.4 96.3 96.4 100.0 100.0 100.0

Note. DIF is the diffuse prior. I-A is the informative-accurate prior. WI-INA is the weakly informative-inaccurate prior. Numbers indicate the percentage of replica
tions that favored the true model over the misspecified model. If the difference in information criteria between the true model and misspecified model was 
greater than 5, numbers were bold.
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considered a smaller number of simulation conditions and 
used only default prior specifications in Mplus (Muth�en & 
Muth�en, 2017).

8.1. Simulation Design

This secondary simulation study was implemented with a 
fully crossed factorial design with three design factors: sam
ple sizes (3 levels), missing data (5 levels), and knot place
ment (4 levels), resulting in a total of 60 cells. Each cell 
consisted of 1,000 replications.

8.1.1. The Population Model
The data-generating model was a linear-linear-linear PGM 
with seven repeated measurements. To formulate a PGM in 
which three linear growth segments join at two knots at 
occasions k1 and k2 with k1 < k2, we can express yij in 
Equation (2) as follows:

yij ¼ g0i þ g1i �minðtj, k1Þ þ g2i

�minðmaxð0, tj − k1Þ, k2 − k1Þ þ g3i �maxðtj − k2, 0Þ

þ �ij, 

where g3i refers to the third latent linear slop. For the popu
lation model, we placed knot locations at the third (k1 ¼ 2) 

and fifth (k2 ¼ 4) time points. Latent means of the three 
slopes were 0.5, 0.75, and 1 to indicate large changes from 
the first to the second slope and from the second to the 
third slope in terms of effect sizes (Cohen, 2002; 
Raudenbush & Liu, 2001). The path diagram with popula
tion parameter values is presented in Figure 8.

8.1.2. Sample Size
We included the following 3 levels of the sample size condi
tion: 50 (small), 150 (medium), and 500 (large).

8.1.3. Missing Data
We considered the following 5 levels of the missing data 
condition: no missing values (Complete), missing values 
concentrated at the start of the study with 30% in the end 
(Concen-S-30), missing values concentrated at the end of 
the study with 30% in the end (Concen-E-30), missing val
ues concentrated at the start of the study with 70% in the 
end (Concen-S-70), and missing values concentrated at the 
end of the study with 70% in the end (Concen-E-70).

8.1.4. Knot Placement
We included the following 4 levels of the knot placement 
condition: both knots were placed at the true locations 

Figure 8. A population model of the secondary simulation study.
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(True Location), one knot was correctly placed at the third 
time point and the other was ignored (One Correct Knot), 
one knot was misplaced at the fourth time point and the 
other was ignored (One Incorrect Knot), and two knots 
were entirely ignored (Ignored Knots). When one knot loca
tion was ignored (i.e., One Correct Knot and One Incorrect 
Knot), a linear-linear PGM was fitted. When both knot 
locations were ignored (i.e., Ignored Knots), a linear latent 
growth model was fitted.

8.1.5. Software and Bayesian Estimation
We used the R lavaan package (Rosseel, 2012) for data 
generation and used Mplus version 8.6 (Muth�en & Muth�en, 
2017) for Bayesian estimation. We implemented the Gibbs 
sampler to generate two MCMC chains each consisting of 
20,000 iterations and had the thinning interval of 1. The 
first 10,000 iterations were discarded as burn-in samples. To 
assess chain convergence, we checked R̂ statistics (Vehtari 
et al., 2021), with their values less than 1.05 as the criterion 
for convergence.

8.1.6. Outcomes of Interest
For Bayesian model fit indices (i.e., PPP-value, BRMSEA, 
BCFI, and BTLI), we extracted their values. For Bayesian 
model selection indices (i.e., BIC and DIC), we computed 
the proportion of replications that favored the true model 
over misspecified models. The difference in values of the 
BIC and DIC was also computed.

8.2. Results

On average, 92.6% of replications converged with R̂ diag
nostics for all parameters less than 1.05. The median per
centage of converged replications was 100%. Because of 
similar results between the BCFI and BTLI, we mainly pro
vide the BCFI results and attach the BTLI results as Online 
Supplementary Materials. The ways the figures and tables 
are interpreted are the same as explained in the previous 
Results section.

8.2.1. PPP-Value
We provide the results for the PPP-value in Figure 9 and 
begin by looking into conditions when there were no miss
ing values. For n¼ 50, the PPP-value failed to detect the 
true model but could detect misfit for the model with one 
correct knot and the model with ignored knots. However, 
the PPP-value could not detect misfit for the model with 
one incorrect knot. When the sample size increased to 150, 
the PPP-value showed improved performance in detecting 
the true model but still could not detect misfit for the 
model with one incorrect knot. For the sample size of 500, 
the PPP-value performed well in detecting model misfit 
because the PPP-values of the true model hovered around .5 
whereas those of the other three misspecified models hov
ered around or less than .05. As the proportion of missing 
data increased to 30%, we observed a similar pattern, except 
the PPP-value could not detect misfit for the model with 
ignored knots when the sample size was 50. When 70% of 
the data were missing, the performance of the PPP-value 
became worsened. For n¼ 50, the PPP-value could not 

Figure 9. The PPP-value across simulation conditions of the secondary simulation study.
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detect the true model and failed to detect misspecified mod
els with one incorrect knot or with ignored knots. When n 
increased to 150, the PPP-value started to detect misfit for 
the model with ignored knots. For n¼ 500, the PPP-value 

performed well in detecting the true model and identifying 
misfit for the models with one correct knot or with ignored 
knots. However, misfit for the model with one incorrect 
knot was not detected.

Figure 10. The BCFI across simulation conditions of the secondary simulation study.

Figure 11. The BRMSEA across simulation conditions of the secondary simulation study.
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8.2.2. BCFI (and BTLI)
Figure 10 presents the results for the BCFI. In the absence 
of missing values and for n¼ 50, the BCFI did not reliably 
indicate a good fit for the true model. However, with larger 
sample sizes (150 or 500), the BCFI showed a good fit for 
the true model, but this was also the case for the model 
with one incorrect knot. When the amount of missing data 
was 30%, a similar pattern was observed. For n¼ 50, how
ever, the BCFI could not detect misfit for the model with 
ignored knots. When the proportion of missing data was 
70%, the overall performance was even worse for the sample 
sizes of 50 and 150, because the BCFI did not detect misfit 
for the model with one incorrect knot and for the model 
with ignored knots. For n¼ 500, misfit was still not detected 
for the model with one incorrect knot.

8.2.3. BRMSEA
The results for the BRMSEA are displayed in Figure 11. 
When there were no missing values, with the sample size of 
50, the BRMSEA could not detect the true model. As the 
sample size increased to 150 and 500, the BRMSEA correctly 
indicated a good fit for the true model. For the misspecified 
models, the BRMSEA detected model misfit for the model 
with one correct knot and the model with ignored knots but 
indicated a good fit for the model with one incorrect knot. 
With 30% missing data, we found a similar pattern, except 
for the n¼ 50 condition. For the sample size of 50, the 
BRMSEA started to indicate a good fit not only for the true 
model but also for the models with one incorrect knot or 
with ignored knots. When the proportion of missing data 
was 70%, the BRMSEA performed worse. For n¼ 50 and 
the Concen-S-70 condition, the BRMSEA indicated a good 
fit to all four models, failing to detect any model misfit. 
When the sample size was 150 or 500, the BRMSEA could 
detect misfit for the model with one correct knot. In par
ticular, for n¼ 500 and the Concen-E-70 condition, the 
BRMSEA additionally detected misfit for the model with 
ignored knots.

8.2.4. BIC and DIC
The selection rates for the BIC and DIC are provided in 
Table 3. We begin with focusing on the similarities between 
the BIC and DIC. Across all missing data conditions, the 
selection rates were the highest when the true model was 
compared with the model with one correct knot and the 
lowest when the true model was compared with the model 
with one incorrect knot. In addition, the selection rates 
decreased as the amount of missing data was larger. 
Another global pattern observed was that the selection rates 
tended to increase with larger sample sizes. However, this 
increase was relatively smaller when comparing the true 
model with the model with one incorrect knot. We add
itionally note the Concen-S-70 condition that showed the 
lowest selection rates for each comparison between the true 
model and misspecified models. This suggests that a larger 
amount of missing data occurring at the beginning of the 
study had a detrimental impact on the performance of the 
BIC and DIC in favoring the true model over misspecified 
models.

Turning to the differences between the BIC and DIC, we 
observed that the DIC generally had higher selection rates 
than the BIC. This means that the DIC performed better in 
detecting model misfit in all comparisons between the true 
model and misspecified models. In particular, when the true 
model was compared with the model with one incorrect 
knot, the DIC performed substantially better than the BIC 
when the sample sizes were 500. These findings indicate 
that the DIC is preferred to the BIC in detecting model mis
fit when complex PGMs are used.

9. Discussion

The Bayesian PGM is a useful modeling framework to 
describe longitudinal data exhibiting segmented develop
mental phases. Successful implementation of Bayesian PGMs 
depends on model evaluation, which is influenced by two 
methodological issues: model misspecification and missing 
data. A limited understanding of these issues prompted the 
current investigation. Our goal has been to understand the 

Table 3. Selection rates of the BIC and DIC of the secondary simulation study: a comparison between the true model and misspecified models.

True location vs. one correct knot True location vs. one incorrect Knot True location vs. ignored knots

n Complete Concen-S-30 Concen-S-70 Complete Concen-S-30 Concen-S-70 Complete Concen-S-30 Concen-S-70

50 100.0 99.2 36.8 0.0 0.0 0.0 2.7 0.9 0.0
150 100.0 100.0 99.8 0.4 0.2 0.1 56.8 25.4 0.8

BIC 500 100.0 100.0 100.0 7.4 2.2 0.5 100.0 99.7 59.0

n Concen-E-30 Concen-E-70 Concen-E-30 Concen-E-70 Concen-E-30 Concen-E-70
50 99.7 65.3 0.1 0.1 1.1 0.0
150 100.0 100.0 0.3 0.0 35.4 3.7
500 100.0 100.0 3.3 2.0 99.9 91.0

n Complete Concen-S-30 Concen-S-70 Complete Concen-S-30 Concen-S-70 Complete Concen-S-30 Concen-S-70
50 100.0 100.0 98.8 20.1 20.1 17.9 72.2 61.5 33.7
150 100.0 100.0 100.0 47.6 38.6 28.7 99.8 99.6 84.5

DIC 500 100.0 100.0 100.0 90.0 83.8 64.9 100.0 100.0 100.0

n Concen-E-30 Concen-E-70 Concen-E-30 Concen-E-70 Concen-E-30 Concen-E-70
50 100.0 99.6 24.0 18.9 63.3 40.6
150 100.0 100.0 43.1 40.1 99.4 94.6
500 100.0 100.0 86.8 82.3 100.0 100.0

Note. Numbers indicate the percentage of replications that favored the true model over the misspecified model. If the difference in information criteria between 
the true model and misspecified model was greater than 5, numbers were bold.
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impact of these two factors on the performance of Bayesian 
model fit and selection indices, with an additional focus on 
their sensitivity under different prior specifications. In this 
section, we wrap up and discuss important findings, provide 
practical guidelines for researchers, and outline our future 
research directions.

9.1. Performance of Bayesian Model Fit and Selection 
Indices

Our first aim was to investigate how well the Bayesian 
model fit and selection indices could evaluate Bayesian 
PGMs in the presence of model misspecification and miss
ing data. We assessed the performance of those indices 
under one-knot and two-knot PGM scenarios. One global 
pattern we found under the one-knot scenario was that 
those indices were better at detecting severely misspecified 
models with the ignored knot than mildly misspecified 
models with misplaced knots. This pattern is in accordance 
with Depaoli et al. (2023) in which the severe degree of 
model misspecification was more likely to be detected in 
Bayesian PGMs. The only exception to this pattern was the 
BIC, which showed poor performance in detecting severe 
misspecification when sample sizes were small or medium. 
When there were two knots, the issue became more compli
cated. In particular, when one knot was misplaced and sim
ultaneously the other was ignored, misfit was hardly 
detected by model fit and selection indices. Such complica
tion highlights the importance of recognizing the limitations 
of those indices utilized in complex PGM scenarios where 
multiple types of misfit can coexist. In addition, the abilities 
of indices in detecting model misfit were worsened when 
the amount of missing data increased. This is not surprising, 
in light of previous research that has shown issues with the 
accuracy of model fit and selection indices when dealing 
with a larger proportion of missing data (Asparouhov & 
Muth�en, 2021; Winter & Depaoli, 2022b). What our finding 
extends is the role of attrition pattern. If a large amount of 
data were missing (i.e., 70% missingness at the last time 
point), there was an effect of attrition pattern such that the 
indices performed worse in detecting misfit when missing 
data were concentrated at the beginning of the study. This 
signals applied researchers that they are encouraged to care
fully devise data collection plans to prevent higher dropouts 
in the initial stages of longitudinal studies.

Across different simulation conditions, sample size played 
an important role in the performance of various indices. 
With complete data, the PPP-value was a reliable index 
when sample sizes became larger; however, they appeared to 
be unreliable for smaller sample sizes. The increasing 
amount of missing data led to a loss of the ability of the 
PPP-value in detecting model misspecification. In the 70% 
missing data conditions, in particular, the PPP-value could 
not detect models with mild misspecifications for large sam
ple sizes. When no missing data were present, the three 
Bayesian approximate fit indices (i.e., BCFI, BTLI, and 
BRMSEA) were less useful than the PPP-value in that, as 
sample size increased, they indicated a good fit for 

misspecified models. Caution is thus needed in using these 
Bayesian approximate fit indices, as what has been pointed 
out in methodological literature (Asparouhov & Muth�en, 
2021; Depaoli et al., 2023; Winter & Depaoli, 2022b). In 
addition, a larger amount of missing data could increase the 
degree to which these three approximate fit indices falsely 
favored the misspecified models. The approach to evaluating 
model fit based on the 90% CIs of the BCFI, BTLI, and 
BRMSEA showed limited utility; they could only detect 
severe model misfit when there were no missing data under 
the largest sample size conditions. As Winter and Depaoli 
(2022b); Depaoli et al. (2023) discussed, the unreliable per
formance of CI-based evaluation method can be attributable 
to other factors than model misspecification per se, and our 
study provides evidence that sample size is one factor that 
came into play.

Between the two Bayesian model selection indices (i.e., 
BIC and DIC), the DIC appeared to be reliable in detecting 
severely misspecified models for at least medium sample 
sizes compared to the BIC. This is alarming to the use of 
the BIC: Researchers are likely to reach erroneous conclu
sions if they ignore the true knots in growth models. 
Furthermore, for the two selection indices, the sample size 
of 50 is too small to conclusively detect wrong knot loca
tions. The medium sample size at the very least is required 
to conclusively detect model misfit when no missingness is 
present.

9.2. Prior Sensitivity

The second aim regarded whether the performances of vari
ous indices were sensitive to different prior specifications. 
According to our simulation results, there was little impact 
of different prior settings. These results repeat what has 
been found in Depaoli et al. (2023) such that prior specifica
tions were not a major component in detecting misspecified 
Bayesian PGMs. The use of the informative-accurate prior 
was not distinctively advantageous than the diffuse or 
weakly informative-inaccurate priors, although it is known 
that different prior specifications influence the ability of 
Bayesian model fit and selection indices to detect model 
misfit (e.g., Cain & Zhang, 2019; Winter & Depaoli, 2022b). 
One possible explanation for the negligible impact of prior 
distributions lies in how the population models are speci
fied. The means of the first and second slope factors were 
0.5 and 0.75 in our simulation study. Suppose, for instance, 
that the magnitude of the second growth phase becomes 
extremely larger (e.g., 7.5) for a true model, and a misspeci
fied model with the ignored knot is fitted. Specifying 
informative-accurate priors for the mean of the second slope 
can aid in avoiding falsely favoring the misspecified model 
because the posterior mean estimate of the second slope will 
hardly overlap with the wrong model.

We therefore argue that the findings from the current 
simulation study should not be interpreted as a complete 
absence of the impact of prior distributions. Prior distribu
tions can be specified in infinite ways according to research
ers. The level of alignment with true values and 
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informativeness of prior distributions can result in different 
conclusions when using the Bayesian model fit and selection 
indices (Winter & Depaoli, 2022b). Bayesian PGMs have 
other parameters that can be susceptible to different prior 
settings such as knot locations or covariance structures and 
can be extended to complex forms (e.g., Kohli et al., 2015; 
Lock et al., 2018). This insight implies that the choice of 
prior settings for other parameters in different forms of 
Bayesian PGMs can have a greater influence on model 
evaluation, potentially altering the performance of model fit 
and selection indices.

9.3. Practical Guidelines for Researchers

The ideal scenario in piecewise growth modeling is without 
model misspecification and missing data, as they are often 
the sources of misleading conclusions. However, in reality, 
both issues are prevalent. We therefore provide Table 4 as a 
comprehensive set of guidelines for the utilization of 
Bayesian model assessment tools to aid applied researchers 
in their use.

In addition, given the less desirable performance of the 
Bayesian approximate fit indices (i.e., BCFI, BTLI, and 
BRMSEA) in assessing a single model, we recommend that 
researchers consider using these indices as a toolbox for 
model comparison when multiple models are compared (see 
also Depaoli et al., 2023; Winter & Depaoli, 2022a, 2022b
for similar arguments). This approach is particularly useful 
given their limited utility in reliably detecting model misspe
cifications in the presence of missing data. To demonstrate, 
suppose a researcher is uncertain about which model is 
optimal among multiple candidate models with knot loca
tions at different time points, and is interested in using the 
BRMSEA to evaluate the models. In this case, the researcher 
can use the BRMSEA as a model comparison index to iden
tify the most optimal model that has the smallest value 
among multiple candidate models. This way, the researcher 
can still incorporate information from the BRMSEA without 
relying solely on model fit assessment.

9.4. Future Research Directions

In the current simulation design, we focused on the misspe
cification in the mean structure, particularly trajectories and 
knot placements. While these types of misspecifications 
drew methodological interests (Depaoli et al., 2023; Kwok 

et al., 2010; Leite & Stapleton, 2011; Ning & Luo, 2017), we 
point out the misspecified covariance structure as another 
possible form of misspecification. Covariance structures can 
be misspecified by, for example, fixing the variances of or 
covariances between growth factors to zero (see also, e.g., 
Wu et al., 2009; Wu & West, 2010; Winter & Depaoli, 
2022b). The application of PGMs can carry misspecification 
in the covariance structure, and this could also have a sub
stantial impact on the performance of Bayesian model fit 
and selection indices, which is a direction that future 
research can dive into.

A research topic that has not received enough attention 
is the performance of the Bayes factor as a model selection 
index. The Bayes factor is the ratio of the marginal likeli
hoods of two models under comparison and quantifies 
which model is better supported by observed data over the 
other (Kass & Raftery, 1995). We did not include the Bayes 
factor in the current study because it is not provided as 
default in Mplus. One of the desirable characteristics of the 
Bayes factor is its ability to penalize complex models that 
have large parameter space (Jefferys & Berger, 1992). We 
thus find its potential advantage in detecting misfit of com
plex models such as Bayesian PGMs in the presence of 
missing data.

Another potential topic regards missing data mecha
nisms. Our study generated MAR data, which is reasonable 
for analyzing longitudinal data (Enders, 2011). It is possible, 
however, that data could have been generated from a miss
ing data mechanism other than the MAR assumption. 
When missingness is nonignorable (i.e., MNAR), the per
formance of Bayesian model assessment measures is 
expected to be different. For instance, Shin et al. (2017) 
found that the performance of the PPP-value was worsened 
under the MNAR assumption than the MCAR or MAR 
assumptions. Future works can direct the focus to the effect 
of the MNAR assumption on Bayesian PGMs and provide 
guidelines regarding how researchers can prevent undesir
able model selection outcomes.

9.5. Concluding Remarks

Evaluating Bayesian PGMs is crucial to reach correct and 
valid research conclusions, and model misspecification and 
missing data are two important factors that can affect model 
evaluation. We examined the performance of model fit and 
selection indices in Bayesian PGMs and provided guidelines 

Table 4. Practical guidelines on using model fit and selection indices in Bayesian PGMs.

Index Key recommendations

PPP-value
Use it to detect mild or severe misspecifications when sample sizes are large without any missing data.
Avoid using it when sample sizes are small.
Avoid using it when there is a higher proportion of missing data concentrated at the beginning of the study.

BCFI Use them to detect severe misspecification when sample sizes are large without any missing data.
BTLI Avoid using them when there is a higher proportion of missing data concentrated at the beginning of the study.
BRMSEA Consider using them as model comparison tools.

Use both to detect mild or severe misspecifications when sample sizes are large.
BIC Use both cautiously when there is a higher proportion of missing data concentrated at the beginning of the study.
DIC Use the DIC instead of the BIC when your analysis model does not have a knot and sample sizes are at least medium.

Avoid using both when sample sizes are small.
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on how to wisely use these indices in the presence of model 
misspecification and missing data. We are hopeful that our 
guidelines can aid future researchers interested in Bayesian 
piecewise growth modeling.
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