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A Comprehensive Evaluation of Model Selection Indices for Class Enumeration 
in Bayesian Latent Growth Mixture Models

Sarah Depaoli , Ihnwhi Heo , Madelin Jauregui , Haiyan Liu , and Fan Jia 

University of California, Merced 

ABSTRACT 
Class enumeration remains one of the most critical and error-prone steps in latent growth mixture 
modeling (LGMM), particularly within the Bayesian framework. This study provides a comprehensive 
simulation-based evaluation of Bayesian model selection indices, focusing on the impact of likelihood 
formulation (marginal used in this case) and Dirichlet prior specification for class proportions. 
Although Bayesian methods offer flexibility and robustness in estimating complex models, missteps in 
class enumeration or inappropriate prior specification can bias results, mislead substantive conclusions, 
and impair model fit. We systematically varied true population structures and prior specifications to 
assess how these factors interact to affect model selection accuracy across various indices. We exam
ined the performance of several Bayesian indices: the deviance information criterion (DIC), the 
Watanabe-Akaike information criterion (WAIC), the leave-one-out information criterion (LOOIC), the 
expected Akaike information criterion (EAIC), and the expected Bayesian information criterion (EBIC). 
Our study contributes practical recommendations for researchers conducting Bayesian LGMM, high
lighting methodological best practices and key areas for further development with respect to model 
comparison and selection indices in the Bayesian framework. These results advance our understanding 
of model selection behavior in complex Bayesian mixture models and provide a foundation for 
improving estimation and inference in applied research.
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Model misspecification within structural equation modeling 
(SEM) remains a critical and persistent area of methodological 
research (e.g., Cao & Liang, 2022; Depaoli et al., 2024; Liu, 
Heo, Depaoli, et al., 2025; McNeish & Harring, 2017; West 
et al., 2012). Numerous specification challenges, including 
errors in both measurement and structural components, can 
compromise research quality, undermine the accuracy of par
ameter estimation and model selection, and ultimately lead to 
misleading substantive research conclusions (Cain & Zhang, 
2019; Depaoli et al., 2023, 2024; Heo et al., 2024; Liu, Heo, 
Depaoli, et al., 2025; Liu, Heo, Ivanov, et al., 2025; McNeish & 
Harring, 2017; Winter & Depaoli, 2022). These issues become 
even more complex and pose substantial challenges to research
ers when SEM incorporates finite mixture modeling to address 
unobserved latent classes and thus account for population het
erogeneity. In such contexts, the risk of misspecification 
expands beyond ensuring proper measurement and structural 
specification. Researchers must carefully consider how to esti
mate and select the appropriate latent class structure.

One widely used modeling framework that embodies both 
SEM and mixture modeling is the latent growth mixture 
model (LGMM; B. Muth�en, 2001; B. Muth�en et al., 1998), 
which combines longitudinal data analysis with class-based 
heterogeneity to uncover distinct latent trajectory classes over 
time. Within the LGMM framework, one of the most central 

challenges is class enumeration—identifying, specifying, and 
selecting the optimal number of latent classes. Class enumer
ation errors can manifest in either overextraction or underex
traction of latent classes, resulting in convergence problems, 
estimation bias, and misclassification. From a frequentist per
spective, these methodological issues have been extensively 
documented (McNeish, 2023; McNeish & Harring, 2017; 
Nylund-Gibson & Choi, 2018; Tueller & Lubke, 2010), and 
various model selection indices have been evaluated for their 
effectiveness in detecting class structure misspecification 
(Nylund et al., 2007). As such, model specification in the finite 
mixture modeling framework should additionally regard the 
reliability and validity of latent class solutions. The ability to 
properly detect model class structures is directly intertwined 
with the ability to correctly interpret latent group differences 
and generalize findings.

Over the past two decades, following Nylund et al.’s 
foundational contribution, significant advancements in 
estimation techniques have extended into Bayesian frame
works. Bayesian estimation has gained increasing popularity 
in SEM (i.e., Bayesian SEM) and mixture modeling due 
to its flexibility, its capability to incorporate prior 
information, and its robust handling of model complexity 
(Depaoli, 2013, 2014; S.-Y. Kim, 2014; S.-Y. Kim et al., 
2013; S. Kim et al., 2022; Kohli et al., 2015; Tong et al., 
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2022; Tong & Ke, 2016, 2021; Tong & Zhang, 2020). 
However, the implementation of Bayesian LGMM introdu
ces two underappreciated yet critical sources of model vul
nerability. First, model misspecification due to incorrect 
class enumeration persists in the Bayesian context, often 
compounded by the choice of fit indices and how the likeli
hood of those indices is formulated (Merkle et al., 2019; 
Tong et al., 2022). Second, the specification of prior distri
butions, particularly those governing class proportions via 
the Dirichlet prior, introduces an additional layer of com
plexity. When these priors are misaligned with the true 
population structure (e.g., assuming equal class proportions 
when the population is highly imbalanced), they can bias 
class assignment, model fit, and selection outcomes 
(Depaoli, 2013, 2014; Depaoli et al., 2017; S. Kim et al., 
2021; Tong et al., 2022).

Prior research has begun to address the first issue. For 
instance, Tong et al. (2022) examined how likelihood for
mulation (marginal vs. conditional) affects the performance 
of Bayesian model selection indices in the context of class 
enumeration in LGMMs. Their findings indicated that mar
ginal likelihood-based model selection indices generally out
perform their conditional counterparts, which resonated 
with similar findings found in other non-mixture SEM 
models (Merkle et al., 2019). However, this topic still calls 
for extensive simulation. Moreover, the influence of prior 
specifications, particularly how priors on class proportion 
and population characteristics affect the performance of 
model selection indices, has not yet been considered, an 
issue we turn to next.

Critically, the second issue—prior (mis)alignment— 
remains virtually unexplored in the Bayesian LGMM litera
ture. Although the use of Dirichlet priors is widespread 
(Depaoli, 2013; Depaoli et al., 2017; Tong et al., 2022; Van 
Erp et al., 2018; Yang & Dunson, 2010), little is known 
about how mismatches between prior assumptions and true 
population class proportions influence model performance. 
To illustrate, when the population includes a minority class 
but the prior assumes equal class sizes, the resulting poster
ior estimates may underrepresent that minority class and 
lead to underextraction of latent classes. In a similar vein, 
using highly informative but incorrect priors for class pro
portions can distort model fit assessments and compromise 
class recovery. The reality is that there will likely be some 
degree of mismatch with the prior in applied settings, since 
the true population-level proportions are unknown. Despite 
its theoretical and practical relevance, this issue of prior 
misalignment has received minimal attention in methodo
logical research.

The present study addresses both of these methodo
logical challenges in tandem. Our investigation evaluates 
the performance of a broad set of Bayesian model selection 
indices, all computed using marginal likelihoods—a choice 
we justify based on its conceptual consistency with tradi
tional SEM practices (as elaborated in subsequent sections) 
and its favorable performance demonstrated in findings by 
Tong et al. (2022); Merkle et al., 2019; Du et al. (2024). 
Our particular focus is on examining the consistency and 

accuracy of these indices in detecting latent class structure 
misspecification under different scenarios of prior settings. 
To this end, we conduct a comprehensive simulation study 
that systematically manipulates design factors, including (1) 
model (mis)specification in class enumeration and (2) 
(mis)alignment between population-level class proportions 
and those specified via the Dirichlet prior. Our simulation 
design improves upon prior work by systematically investi
gating how model misspecification and prior misalignment 
interact to affect model convergence and the selection of 
the true latent class solution. To our knowledge, this is the 
first study to explicitly assess the impact of prior misalign
ment on class enumeration in Bayesian LGMMs. Our hope 
is that the current findings will help researchers make 
more informed decisions regarding class enumeration, 
latent class solution selection, and the thoughtful specifica
tion of priors in applied settings—recognizing that 
priors may not always align perfectly with population char
acteristics and thus require practical, data-informed 
guidance.

1. Organization of the Current Investigation

This paper is organized as follows. We first begin with an 
overview of the benefits of Bayesian estimation for latent 
variable models, and then extend this discussion to the 
LGMM, which is the model we focus on here. We then 
present the formulation and notation for the LGMM, 
including the relevant prior distributions. Next, we turn our 
attention to the methods that are currently available for 
detecting model (mis)fit in Bayesian latent variable model
ing. We present notation and descriptions for the most 
commonly implemented indices, which are a major focus in 
the current investigation. We then tie these topics together 
by presenting rationale for further exploration regarding the 
use of these indices for detecting model misfit in the 
LGMM. That links directly to the simulation design and 
results, which are presented next, including a secondary 
simulation examining an extreme yet realistic research sce
nario. We conclude the paper with a discussion of our find
ings, points that applied researchers should consider when 
implementing these indices in practice, and recommenda
tions for future methodological developments regarding fit 
and assessment measures in the Bayesian estimation 
framework.

2. Benefits of Bayesian Estimation for Latent 
Variable Models

Several seminal papers have been written about the general 
benefits of Bayesian methods (see, e.g., Carlin & Louis, 
2000; Gelman et al., 2014; B. O. Muth�en & Asparouhov, 
2012; van de Schoot et al., 2017; 2021). In addition, the 
popularity of this framework has been steadily on the rise, 
especially for SEM (van de Schoot et al., 2017). There are 
many potential reasons for increased use and exposure to 
these methods with SEM, and we briefly highlight the most 
relevant reasons here.
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Within SEM, model complexity is tied to accurate par
ameter recovery and convergence issues (S.-Y. Kim et al., 
2013). More complex models can produce problems with 
convergence, and there can also be issues with obtaining 
inaccurate parameter estimates (sometimes due to the non- 
convergence issue and sometimes not). Bayesian methods 
have been shown to aid in solving these issues in a variety 
of different SEM model-forms (see, e.g., S.-Y. Kim et al., 
2013). In addition, SEM has been discussed in a much more 
flexible manner in the Bayesian framework (B. O. Muth�en 
& Asparouhov, 2012), where processes requiring strict 
model constraints (e.g., model invariance testing) can be 
carried out in a more flexible, or approximate, manner 
through the implementation of priors.

One area where Bayesian methods have shown to be of 
particular benefit is in the estimation of latent mixture mod
els. Specifically, mixture (or latent class) models carry an 
added complexity of estimating the class structure. 
Researchers often rely on substantive knowledge and a col
lection of model fit or assessment measures to help deter
mine the number of latent classes from a set of possible 
solutions. Previous simulation research by Depaoli (2013) 
has shown that, even when estimating the correct number 
of latent classes, it can be difficult to properly estimate the 
size of those latent classes via class proportion estimates. 
That estimation accuracy issue is tied to factors such as the 
number of classes, whether there is a strong majority class 
(i.e., a class with a much larger proportion of cases 
assigned) or a minority class, and also separation—the con
cept of how overlapping, or distinctive, latent classes are 
from one another. Especially when class proportions are 
quite different across latent groups (e.g., there is a very large 
or very small class), and separation is more difficult to dis
tinguish, the Bayesian framework has been shown to greatly 
enhance the accuracy of results (Depaoli, 2013, 2014; 
Depaoli et al., 2017; S. Kim et al., 2021; Tong et al., 2022). 
The use of priors, particularly for the latent class propor
tions, appears to benefit the results beyond what can be pro
duced using conventional estimation techniques. However, 
the selection and implementation of these priors should be 
done with intent and transparency, as even a slight modifi
cation of the hyperparameters can alter the findings 
(Depaoli et al., 2017).

3. The Latent Growth Mixture Model: Notation and 
Priors

The LGMM can be used for tracking change patterns over 
time, and the mixture component acts as an extension to 
the simpler latent growth curve model (which does not 
include latent classes). This section borrows notation 
detailed in Depaoli (2021). For the LGMM, the data are 
assumed to have been generated from a mixture distribu
tion, where there are c ¼ 1, 2, :::, C latent classes of propor
tion pc; each allowed its own set of parameters as detailed 
in the model equations. The model can be separated into a 
measurement and a structural part of the model. The meas
urement part of the model can be written as:

yic ¼ Kygic þ eic, (1) 

where yic is a vector of observed repeated-measure data for 
person i in latent class c, Ky is a T �m matrix of factor 
loadings (T ¼ number of time points; m ¼ number of latent 
factors). Column 1 in Ky is fixed to 1’s, and the remaining 
m − 1 columns contain information about the time scale 
and slope shape for data collection (e.g., 0, 1, 2, 3 for four 
equally spaced time points and a linear slope). The vector, 
gic; contains the m latent growth parameters (e.g., intercept 
and slope), and eic is a vector of normally distributed meas
urement errors (assumed centered at zero).

The structural part of the model is as follows:

gic ¼ ac þ fic, (2) 

where vector gic still contains the growth parameters, ac is a 
vector of factor means, and fic is a vector of normally dis
tributed (centered at zero) deviations of parameters from 
their population means. The reduced form of the equation 
is: 

yic ¼ Kyðac þ ficÞ þ eic: (3) 

From this formulation, the model-implied mean and 
covariance can be respectively written as follows:

lcðhÞ ¼ Kyac, (4) 
RcðhÞ ¼ KyWgK

0
y þH�c, (5) 

where fic can be omitted, as the expectation of g is equal to 
a: Here, lcðhÞ is the mean vector of the y’s, and RcðhÞ is the 
covariance matrix of the y’s. Further, Wg is the latent factor 
covariance matrix, and the covariance matrix for the mani
fest variable errors is H�c: In this expression, the latent fac
tor covariance matrix does not contain a c subscript, which 
indicates homogeneity across classes, but this can be relaxed 
by adding a c subscript. Figure 1 shows a diagram of the 
basic form of the LGMM.

The LGMM can be implemented in the frequentist or 
Bayesian estimation frameworks. For Bayesian estimation, 
model priors must be defined for each parameter in the 
model. The most common model priors for the main ele
ments of the LGMM are as follows:

p � D d1:::dC½ �, amc � N lamc
, r2

amc

h i
,

h�rr � IG ah�rr
, bh�rr

� �
, Wg � IW W, �½ �:

The latent class proportion for each class is denoted pc;

and the vector of class proportions for all C classes (p) is 
typically modeled using a Dirichlet (D) distribution. The 
Dirichlet distribution hyperparameters (d1, :::, dC) represent 
hyperparameters reflecting the class sizes. Depending on the 
software implemented, these hyperparameters may be 
formed in terms of proportions, number of people, or 
thresholds. An extensive discussion of these differences is 
provided in Chapter 10 of Depaoli (2021). The growth 
factor means (a) are typically assumed normally 
distributed (N ). Here, amc is the latent factor mean for 
factor m ¼ 1, :::, M and latent class c ¼ 1, :::, C: The two 
hyperparameters are lamc 

(expectation for the factor mean; 
mean hyperparameter) and r2

amc 
(variance hyperparameter). 
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Next, H�c (error variance matrix) can be linked to a prior. 
When the error variances are assumed uncorrelated, then 
univariate priors can be placed on the individual elements 
in H�c; denoted as h�rr (representing an individual element 
in the r � r matrix). The prior for this element is typically 
defined by an inverse gamma (IG) distribution, with hyper
parameters representing the shape (ah�rr

) and scale (bh�rr
) of 

the distribution. Finally, Wg is the latent factor covariance 
matrix and it can receive the inverse Wishart (IW) prior 
distribution, with hyperparameters representing a positive 
definite matrix of size p (W) and degrees of freedom (�). 
Just as with any prior, this one can be set to vary across 
latent classes if desired. In all cases, manipulating the hyper
parameters controls the level of (un)certainty or inform
ativeness in the corresponding prior distribution.

4. Information Criteria in the Bayesian Framework

The current investigation examines the ability of a variety of 
Bayesian information criteria as model selection indices to 
identify proper class enumeration (e.g., correct number of 
latent classes to reflect the population). We included several 
indices here to provide a full landscape and comparison for 
commonly implemented tools. Next, we present details for 
the deviance information criterion (DIC; Spiegelhalter et al., 
2002), the Watanabe-Akaike information criterion (WAIC; 

Watanabe, 2010), the leave-one-out information criterion 
(LOOIC; Vehtari et al., 2017), the expected Akaike informa
tion criterion (EAIC; Carlin & Louis, 2000) and the 
expected Bayesian information criterion (EBIC; Carlin & 
Louis, 2000), where the EAIC and EBIC are a Bayesian ana
log of the Akaike information criterion (AIC; Akaike, 1974) 
and the Bayesian information criterion (BIC; Schwarz, 
1978), and incorporates the expectation over the posterior 
distribution of model parameters (Carlin & Louis, 2000; 
Spiegelhalter et al., 2002). In all cases, the information crite
ria are interpreted in the same way. Specifically, lower esti
mates correspond with the optimal model when comparing 
information criteria values across several competing models.

In this study, the information criterion is computed 
based on the marginal likelihood. For the LGMM, the mar
ginal likelihood is defined as

Lðp, hjyÞ ¼
Yn

i¼1

XC

c¼1
pc pðyijlcðhÞ, RcðhÞÞ, 

where p ¼ ðp1, p2, :::, pCÞ is the vector of class proportions, 
constrained such that 

PC
c¼1 pc ¼ 1: The parameter vector h 

includes all the model parameters, such as the class-specific 
mean ac and the covariance matrices Wc of the latent inter
cept and slope, and the residual variances Hc: The function 
pðyijlcðhÞ, RcðhÞÞ denotes the likelihood of observation yi 
given the model implied means lcðhÞ and covariance matrix 
RcðhÞ of class c.

Given a set of posterior samples ðp1, h1Þ, 
ðp2, h2Þ, :::, ðpS, hSÞ for model parameters, we would obtain a 
sample for the log-likelihood D with Dsðp, hÞ ¼ Dðps, hsÞ;

Dsðp, hÞ ¼ −2 log ðLðps, hsjyÞÞ:

4.1. DIC

The DIC was proposed by Spiegelhalter et al. (2002) to 
evaluate the fit of the Bayesian model while considering the 
complexity of the model, despite some arguments on its 
robustness (Spiegelhalter et al., 2014). The DIC can be writ
ten in the following two equivalent forms with ðp̂, ĥÞ being 
the posterior mean of the model parameters,

DIC ¼ Dðp, hÞ þ pD or DIC ¼ Dðp̂, ĥÞ þ 2pD, 

with pD representing the complexity of the model, which is 
defined as the discrepancy between the mean of the devi
ance Dðp, hÞ and deviance evaluated at the posterior mean 
of the model parameters, pD ¼ Dðp, hÞ − Dðp̂, ĥÞ:

4.2. WAIC

The WAIC was proposed by Watanabe (2010) and is com
puted based on the log-pointwise predictive density. WAIC 
offers several advantages, including being invariant to the 
reparameterization and applicability to singular models 
where DIC may fail (Gelman et al., 2014; Vehtari et al., 
2017).

Figure 1. Latent growth mixture model.
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For a mixture model, the WAIC is defined as:

WAIC ¼ −2lppdþ 2pWAIC, (6) 

where the log-pointwise predictive density (lppd) is

lppd ¼
Xn

i¼1
log

1
S

XS

s¼1
pðyijp

s, hsÞ

 !

, (7) 

where S is the number of posterior samples, and ðps, hsÞ

represents the s-th posterior draw. The effective number of 
parameters, pWAIC; serves as the penalty of a model com
plexity and is calculated as the sum of posterior variances of 
the log-likelihood across data points:

pWAIC ¼
Xn

i¼1

1
S

XS

s¼1
ð log pðyijp

s, hsÞ −
1
S

XS

s¼1
log pðyijp

s, hsÞÞ
2
:

Thus, the WAIC provides an estimate of out-of-sample 
predictive accuracy while adjusting for model complexity.

4.3. LOOIC

The LOOIC is a Bayesian model selection index based on 
leave-one-out cross-validation (Vehtari et al., 2017). It pro
vides an estimate of out-of-sample predictive accuracy and 
is computed as:

LOOIC ¼ −2 delpdloo, (8) 

where the expected log pointwise predictive density (elpd) 
under leave-one-out cross-validation is defined as

elpdloo ¼
Xn

i¼1
log pðyijy−iÞ ¼

XN

i¼1
log

ð

pðyijhÞpðhjy−iÞdh

� �

, 

where pðyijy−iÞ denotes the leave-one-out predictive density 
for observation yi; given the dataset excluding the ith 
observation.

In practice, this quantity is estimated using Pareto- 
smoothed importance sampling (PSIS; Vehtari et al., 2017). 
The PSIS-based estimate of the expected log-pointwise pre
dictive density is given by:

delpdpsis-loo ¼
Xn

i¼1
log

PS
s¼1x

s
i pðyijh

sÞ
PS

s¼1x
s
i

 !

, 

where xs
i are importance sampling weights. This estimation 

is implemented in the loo package in R (Vehtari et al., 
2017)

4.4. EAIC

The EAIC is an extension of the AIC that incorporates pos
terior expectations, making it suitable for use in a Bayesian 
framework (e.g., Carlin & Louis, 2000). Like the AIC, the 
EAIC balances model fit and complexity but is computed 
using Bayesian posterior samples rather than point 

estimates. Given the posterior samples ðp1, h1Þ, 
ðp2, h2Þ, :::, ðpS, hSÞ; the sample-level EAIC is computed as:

EAIC ¼ −2
Xn

i¼1

1
S

XS

s¼1
log pðyijp

s, hsÞ

 !

þ 2 pEAIC, 

where the effective number of parameters is given by:

pEAIC ¼
Xn

i¼1

1
S

XS

s¼1
log pðyijp

s, hsÞ − log pðyijp̂, ĥÞ

" #

, 

and �p and �h denote the posterior means of the parameters.

4.5. EBIC

The EBIC (Carlin & Louis, 2000) is conceptually similar to 
the EAIC, but it employs a different penalty term that grows 
with sample size, following the spirit of the BIC. Both crite
ria use posterior samples to account for model uncertainty.

The sample-level EBIC is defined as:

EBIC ¼ −2
XN

i¼1

1
S

XS

s¼1
log pðyijp

s, hsÞ

 !

þ log ðnÞ � pEBIC, 

where the effective number of parameters is given by:

pEBIC ¼
Xn

i¼1

1
S

XS

s¼1
log pðyijp

s, hsÞ − log pðyijp̂, ĥÞ

" #

, 

and p̂ and ĥ represent the posterior means of the model 
parameters.

4.6. Marginal vs. Conditional Likelihoods for 
Information Criteria

In the current study, the information criteria are computed 
based on the marginal likelihood, integrating over the ran
dom components, including the latent growth factors and 
class assignments. We acknowledge that these fit indices 
can, in general, be defined for any form of the likelihood, 
including the conditional likelihood given the latent growth 
factors and class assignments (Celeux et al., 2006; Gelman 
et al., 2014; Spiegelhalter et al., 2002).

In existing software for Bayesian SEM, such as JAGS, 
BUGS, or Stan (Carpenter et al., 2017; D. J. Lunn et al., 
2000; D. Lunn et al., 2012; Plummer, 2003), the deviance is 
typically computed based on the conditional likelihood 
(Merkle et al., 2019). However, treating latent factor scores 
and class memberships as actual parameters of interest can 
lead to substantially different assessments of model com
plexity. In the general SEM framework, latent factor scores 
are not considered model parameters. Consequently, the fit 
indices in the frequentist SEM tradition are all based on the 
marginal likelihood, where the latent variables are 
integrated.

To maintain consistency with the frequentist framework 
and likelihood-based fit indices, we computed the informa
tion criteria based on the marginal likelihood. This 
approach aligns with recent discussions in the literature. For 
example, Tong et al. (2022) investigated the impact of using 
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marginal versus conditional likelihoods on class enumer
ation in Bayesian LGMMs and found that marginal 
likelihood-based indices such as the DIC, WAIC, and leave- 
one-out cross-validation outperformed their conditional 
counterparts. These findings are consistent with earlier 
results from non-mixture SEM models (Du et al., 2024; 
Merkle et al., 2019), which also emphasized the limitations 
of conditional likelihood-based comparisons. This distinc
tion is important, as it can substantially influence model 
selection outcomes. In line with these recommendations, 
our implementation relies on marginal likelihoods for all 
model selection index computations to maintain conceptual 
coherence with the SEM tradition.

5. Brief Literature Recap

Previous literature has focused on the performance of vari
ous information criteria in terms of model misspecification 
and class enumeration. Specifically, the majority of the 
Bayesian work has focused on the DIC, BIC, EAIC, EBIC, 
and others in non-mixture models, such as confirmatory 
factor analysis (CFA), SEM, latent growth curve modeling 
(LGCM), and item response theory (IRT). Key findings 
reveal nuanced performance variations across different 
model specifications, prior selections, and sample sizes.

For example, Cain and Zhang noted that within SEM, 
the true model detection rates of the DIC against underfit
ting models improved as the sample size, model size, and 
degree of model misspecification increased. Informative pri
ors were found to be superior to diffuse priors, although 
the influence of priors decreased as sample size increased. 
Related to the role of priors, Liu et al. (2022) examined the 
impact of priors on different locations and revealed that the 
DIC is more sensitive when selecting the true model, which 
was more complex than the misspecified (underfitting) 
model. Moreover, several studies in LGCM compared the 
performance of the BIC and DIC in various forms of mis
specification (Depaoli et al., 2023, 2024; Heo et al., 2024; 
Winter & Depaoli, 2022). Winter and Depaoli highlighted 
that with a quadratic latent growth model, the BIC, and to 
a lesser extent the DIC (less sensitive to sample size), pre
ferred more parsimonious models over the true model, 
while both could correctly identify the true model com
pared with overfitting models. Depaoli et al. (2023) and 
Heo et al. (2024) reached similar conclusions in the context 
of the piecewise growth model. Specifically, they found that 
the DIC outperformed the BIC when detecting misplace
ment or ignorance of the change point, while both required 
large sample sizes. Conversely, in the context of CFA, 
Depaoli et al. (2024) found that the BIC consistently out
performed the DIC in model selection, especially in overfit
ting scenarios. These seemingly contradictory findings 
across studies reflect the inherent complexity of evaluating 
information criteria performance in Bayesian modeling, as 
results can be impacted by many factors, such as the selec
tion of priors, the nature of model misspecification, and 
sample size. Notably, a consistent pattern emerging from 
these studies was that the BIC tended to prefer 

parsimonious models compared to the DIC. The specifica
tion of the DIC may also play a role in performance, with 
Du et al. (2024) indicating that the marginal-likelihood- 
based version outperformed the conditional-likelihood-based 
version.

Regarding the LGMMs, in particular, studies on the per
formance of information criteria for identifying the correct 
number of classes have been found in the frequentist 
framework. For example, Nylund et al. (2007) studied class 
enumeration in a linear LGMM with two classes and noted 
that the BIC generally worked well and outperformed the 
AIC in identifying the correct number of classes, although 
it was sensitive to small sample sizes. In contrast, other 
studies revealed that both the AIC and BIC could perform 
poorly with highly complex models, such as multiple-class 
models with heterogeneous growth patterns (e.g., Peugh & 
Fan, 2012; Tofighi & Enders, 2008) and multiphase 
LGMMs (e.g., S.-Y. Kim, 2014). Also regarding the LGMM, 
S. Kim et al. (2021) explored index performance in the 
context of different variations of the model, including the 
conventional LGMM formulation, t-based version (allowing 
for thicker tails), and the median-based formulation of the 
model. The DIC, WAIC, and LOO-CV were compared 
across these model types. The authors found that proper 
model selection was most consistent for the t-based and 
median-based formulations of the LGMM. The conven
tional specification of the LGMM was linked to poorer 
selection accuracy among these indices, especially when 
outliers were present. Overall, the literature on class enu
meration demonstrates that the performance of information 
criteria is influenced by multiple interacting factors, includ
ing class separation, class proportion, model complexity, 
sample size, and even estimation procedures (McNeish & 
Harring, 2017).

The performance of additional Bayesian model selection 
indices, such as the EAIC and EBIC, has previously been 
evaluated in the context of IRT models. According to 
Bolfarine and Bazan (2010), these two indices, along with 
the DIC, demonstrated good performance in estimating abil
ity parameters, with the DIC and EAIC performing similarly 
in favoring skewed logistic IRT models. In a later study, da 
Silva et al. (2019) found that the performance of the EAIC 
and EBIC was sensitive to both sample size and the number 
of items. As a result, the authors advised against using the 
EAIC and EBIC in models with small numbers of respond
ents or items. The performance of several common Bayesian 
and non-Bayesian indices were also studied in the IRT- 
framework. In particular, Luo and Al-Harbi (2017) consid
ered the fully Bayesian indices of WAIC and LOO-CV and 
found that these indices performed better than the conven
tional methods of the likelihood ratio test, AIC, BIC, and 
DIC. They further highlighted the inconsistencies in the 
AIC performance for proper model detection under differ
ent conditions such as sample size and test length. In add
ition, Fujimoto and Falk (2024) examined the DIC, WAIC, 
and LOO-CV in the context of multidimensional IRT. The 
general findings suggested that the DIC favored certain IRT 
models over others, even when they represented model mis- 
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specifications. The DIC showed much more bias and pat
terns of incorrect model selection as compared to the 
WAIC and LOO-CV.

Despite these investigations across various modeling con
texts, an important gap remains in the literature: No study 
has yet examined the performance of a broad range of 
information criteria under both class enumeration and prior 
misalignment within Bayesian mixture models. Since the 
Bayesian indices we covered above may be helpful tools for 
identifying class structures, our goal is to assess this capabil
ity in terms of prior (mis)alignment. In the following sec
tions, we detail a comprehensive simulation study aimed at 
uncovering this methodological complexity within the 
Bayesian framework.

6. Simulation Design

This study uses a simulation design to evaluate the perform
ance of several marginal likelihood-based information crite
ria (DIC, WAIC, LOOIC, EAIC, and EBIC) in 
distinguishing correct from incorrect model specifications in 
LGMMs, under conditions where the priors for true class 
proportions are either aligned or misaligned. The perform
ance of each criterion was assessed across scenarios that var
ied three key factors: sample size (150, 300, 900), class 
separation as indexed by Mahalanobis distance (2.7, 3.2, 
3.7), and latent class proportions (equal vs. unequal). The 
analysis model specification was manipulated along two 
dimensions: the number of latent classes (1-class, 2-class, 3- 
class, and 4-class solutions) and the type of prior distribu
tions specified for class proportions. For 1-class solutions, 
only a diffuse prior was used, yielding 3 (sample sizes) � 3 
(class separation levels) � 2 (class proportions) � 1 (prior) 
¼ 18 conditions. For 2-class, 3-class, and 4-class solutions, 
three types of priors were examined: a diffuse prior, an 
informative prior assuming equal class sizes, and an inform
ative prior assuming unequal class sizes, resulting in 3� 3 
� 2� 3¼ 54 conditions for each class solution. With three 
such class solutions, this yields 54� 3¼ 162 additional con
ditions. In total, 18 (from 1-class) þ 162 (from 2–4-class) ¼
180 unique simulation conditions were generated. Each con
dition included 500 replications, resulting in 90,000 total 
simulated datasets.

6.1. Population Model

The population model was a linear LGMM, consisting of 
four time points and two latent classes. The residual vari
ance was fixed at 0.5, while the variances of the intercept 
and slope were set to 18 and 2, respectively, with no covari
ance between the growth factors (Figure 1). Population val
ues for the LGMM were determined based on the degree of 
class separation (described below; Depaoli, 2013; S.-Y. Kim, 
2014; Tong et al., 2022) and are presented in Table 1.

6.2. Sample Size

We designed the study to include three different sample size 
conditions: a small sample with 150 participants, a medium 
sample with 300 participants, and a large sample with 900 
participants. These varying sample sizes allowed for a more 
comprehensive assessment of the model’s performance 
across different population sizes (Depaoli, 2013; S. Kim 
et al., 2022; Tong et al., 2022).

6.3. Class Separation

Growth parameter means were adjusted to represent three 
levels of class separation, determined by the multivariate 
Mahalanobis distance (MD) obtained by 
fðl1 − l2Þ

0
R−1ðl1 − l2Þg

1=2
; where l1 and l2 denote the 

mean vectors of the first and second latent classes, respect
ively, and R−1 is the inverse of the common covariance 
matrix. These levels corresponded to a small (MD ¼ 2.7), 
moderate (MD ¼ 3.2), and large (MD ¼ 3.7) degree of sep
aration between Class 1 and Class 2 (S.-Y. Kim, 2014; S. 
Kim et al., 2021; Tong et al., 2022). A comprehensive out
line of the intercept and slope values for each level of class 
separation is provided in Table 1. To ensure realistic and 
interpretable parameter settings, we modified the intercept 
and slope values for Class 2 based on the specified class sep
aration levels and informed by population values reported 
in Depaoli (2013).

6.4. Class Proportion

Previous mixture studies indicate that unequal class propor
tions can influence both the accuracy of model selection 

Table 1. Summary of simulation population parameters.

Simulation factor Levels

Sample size n ¼ 150, 300, 900
Class proportion Equal (50/50) Unequal (70/30)

Class separation MD ¼ 2:7 (small), 3.2 (medium), 3.7 (large)

Population intercept and slope Class 1  
b0 ¼ 48 b1 ¼ 3  
Class 2  
b0 ¼ 40:913 b1 ¼ 0 (small)  
b0 ¼ 37:835 b1 ¼ 0 (medium)  
b0 ¼ 35:138 b1 ¼ 0 (large)

Model specification True Model (2 class)  
Estimated Models: Underspecified (1 class) and overspecified (3 and 4 class)
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and parameter recovery (Depaoli, 2013; Tueller & Lubke, 
2010). Therefore, we varied the class proportions at the 
population level, considering both equal (1:1) and unequal 
(7:3) ratios.

6.5. Model Specification

6.5.1. Class Enumeration
We varied the model specification to include a 1-class 
(underspecified), 2-class (correctly specified), 3-class, and 4- 
class (overspecified) solution. This approach enabled us to 
assess each index’s ability to distinguish between correct and 
incorrect model specifications, including those that under- 
or overestimate the number of latent classes.

6.5.2. Class Proportion Priors
The Dirichlet prior for class proportions in each solution 
was set to one of three types: diffuse, informative equal, or 
informative unequal. Our focus was to study the impact of 
using correct versus incorrect informative priors in compari
son to standard diffuse priors. The class proportion priors 
varied across different sample sizes and model specifications, 
as detailed in Table 2. Note that for the underspecified 1- 
class solution, only diffuse priors were applied.

6.6. Bayesian Estimation

On Mplus Version 8.7 (L. K. Muth�en & Muth�en, 
1998–2017), data were generated, and the Bayesian estima
tion approach was implemented. Each model was estimated 
using a single chain with 40,000 iterations, with the first 
half discarded as burn-in. The total number of iterations 
was selected based on preliminary tests of different chain 
lengths to ensure adequate convergence while minimizing 
unnecessary computational burden. To prevent between- 
chain label switching, only one Markov chain was used. To 
address within-chain label switching, parameter identifiabil
ity constraints were applied (Cassiday et al., 2021). 
Specifically, for models with two or more classes, constraints 
were imposed such that the intercept of Class 1 was 
restricted to be greater than that of Class 2. This ensured a 
consistent ordering of latent classes across replications.

To mitigate issues related to parameter solutions reaching 
local maxima, we tested a range of custom random start val
ues for each condition. These included sets perturbed from 
the true parameter values and purely random initializations. 
These strategies were used to improve the likelihood of con
vergence to the global maximum and to reduce the risk of 
local solutions. For the 2-class solution, the true parameter 
values were used as starting values. For the other solutions 
(1-class, 3-class, and 4-class), we specified custom initial val
ues tailored to each model. These starting values proved 
effective, consistently avoiding convergence to local solu
tions across all replications.

Following model estimation across simulation conditions, 
posterior chains were extracted from Mplus and imported 
into R for the computation of marginal likelihood-based 
indices. Specifically, we calculated the log-likelihoods and 
implemented the DIC, EAIC, and EBIC directly in R, while 
the LOOIC and WAIC were computed using the loo pack
age (Vehtari et al., 2017). The log-likelihood values were 
extracted from the posterior samples, so that pointwise log- 
likelihoods for each observation and posterior draw were 
retained, as required for the computation of the LOOIC and 
WAIC.

6.7. Outcomes of Interest

Our evaluation focuses on two primary outcomes: conver
gence rates and selection rates. Convergence rates reflect the 
stability and computational feasibility of the models under 
different simulation conditions, whereas selection rates 
assess the accuracy of each information criterion in identify
ing the correct number of latent classes.

To evaluate performance, the simulation manipulates two 
central sources of model specification in mixture model
ing—class enumeration and class proportion priors—across 
varying levels of sample size, class separation, and 
population-level class proportions. We examine how these 
factors interact to influence both convergence and class enu
meration outcomes across all model selection indices.

7. Simulation Results

7.1. Convergence Rates

Convergence rates were calculated as the proportion of rep
lications in which the highest potential scale reduction fac
tor (across all estimated parameters within that replication) 
was below 1.05, indicating successful convergence, out of all 
replications considered across simulation conditions. While 
the mean convergence rate across all replications was 
69.49% and the median convergence rate was 94.70%, con
vergence rates varied across simulation conditions, as pre
sented in Figure 2.

In Figure 2, the columns represent six conditions derived 
from three sample size levels (150, 300, and 900) and two 
class proportion conditions at the population level (equal vs. 
unequal class proportions). The rows correspond to three 
levels of class separation based on the Mahalanobis distance 

Table 2. Class proportion priors.

Class solution Diffuse Informative equal Informative unequal

n ¼ 150
2-class Dð10, 10Þ Dð75, 75Þ Dð105, 45Þ
3-class Dð10, 10, 10Þ Dð50, 50, 50Þ Dð105, 30, 15Þ
4-class Dð10, 10, 10, 10Þ Dð37:5, 37:5, 37:5, 37:5Þ Dð105, 15, 15, 15Þ

n ¼ 300
2-class Dð10, 10Þ Dð150, 150Þ Dð210, 90Þ
3-class Dð10, 10, 10Þ Dð100, 100, 100Þ Dð210, 60, 30Þ
4-class Dð10, 10, 10, 10Þ Dð75, 75, 75, 75Þ Dð210, 30, 30, 30Þ

n ¼ 900
2-class Dð10, 10Þ Dð450, 450Þ Dð630, 270Þ
3-class Dð10, 10, 10Þ Dð300, 300, 300Þ Dð630, 180, 90Þ
4-class Dð10, 10, 10, 10Þ Dð225, 225, 225, 225Þ Dð630, 90, 90, 90Þ

Note. The true number of classes was two, with 1:1 class proportions for equal 
conditions and 7:3 for unequal conditions.

8 DEPAOLI ET AL.



(MD ¼ 2.7, 3.2, and 3.7). Within each plot, the x-axis repre
sents the class solution, ranging from one to four classes, 
while the y-axis indicates the proportion of replications that 
successfully converged. Each plot contains three lines, dis
tinguishing prior specifications: diffuse, informative-equal, 
and informative-unequal.

There are several general patterns in the convergence 
rates. First, a broad pattern emerged highlighting that con
vergence rates tended to drop as the number of estimated 
classes increased. For diffuse and informative-equal priors, 
this pattern was especially the case. We note, however, that 
for some informative-unequal prior conditions (especially 
when class proportions at the population level were 
unequal), convergence rates did not drop as much. We 
expect this to be due to the prior specification better align
ing with the population model. The second pattern that 
emerged was that convergence rates increased as sample 
sizes got larger. Third, when prior specifications aligned 
with the class proportion at the population level, conver
gence rates were higher. Lastly, convergence rates generally 
increased as class separation increased; however, such an 
effect was particularly pronounced when class proportions 
were equal at the population level and in cases of overex
traction (e.g., estimating three-class or four-class solutions).

For the upcoming results of selection rates, we included 
only replications in which all four class solutions (i.e., 1- 
through 4-class models) successfully converged. This 
ensured that model comparisons were conducted across a 
consistent set of competing solutions, rather than a partial 
set of converged solutions. This reflects typical research 

practice in which comparisons are made only among class 
solutions that have reached convergence.1

7.2. Selection Rates

Results for the simulation study are presented in Figures 
3–5 for sample sizes n¼ 150, 300, and 900, respectively. The 
figures are all structured the same. Columns represent the 
different class separation conditions, with the smallest separ
ation (MD ¼ 2.7) on the left and the largest separation con
dition (MD ¼ 3.7) on the right. There are six rows, with 
the top three rows aligning with the equal class proportion 
conditions and the bottom three rows aligning with the 
unequal class proportion conditions.

For the equal proportion conditions, row 1 aligns with 
diffuse priors, row 2 aligns with informative priors that 
assume equal class proportions (aligned with the true class 
proportion structure), and row 3 aligns with informative 
priors that assume unequal class proportions (misaligned 
with the true class proportion structure).

For the unequal proportion conditions, row 4 aligns with 
diffuse priors, row 5 aligns with informative priors that 
assume equal class proportions (misaligned with the true 
class proportion structure), and row 6 aligns with 

Figure 2. Convergence rates.

1We note that an alternative treatment of convergence, in which model 
selection indices were compared based on all available converged models 
within each replication (rather than requiring convergence across all four class 
solutions), was explored. Results under this approach are reported in the 
supplementary materials at the Open Science Framework repository (https:// 
osf.io/2resf/).
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informative priors that assume unequal class proportions 
(aligned with the true class proportion structure).

Within each plot, there are five lines, each representing 
the model assessment indices under investigation. The out
come presented in these plots (the y-axis) represents the 
selection rates in terms of the proportion of replications 
selecting either a 1, 2, 3, or 4 class solution. There is a 
grayed shading in each plot highlighting that the true num
ber of latent classes was 2 for all cells presented.

7.2.1. Equal Class Proportions, n¼ 150
In this section, we describe the results produced when equal 
class proportions were specified in the population model. 
For the 2-class structure, this implies an equal 50%/50% 
split of cases into the two latent classes at the population 
level. The first three rows of Figure 3 represent these cells 
for n¼ 150; sample size results for n¼ 300 and 900 are nar
rated in subsequent sections, but we focus initially on the 
smallest sample size, which presented the most nuanced 
results.

For the equal class proportion conditions, there are two 
prior conditions that align with the true structure of equal 
class proportions in the population. Row 1 represents dif
fuse priors, and row 2 represents informative priors reflect
ing equal class proportions. Although the diffuse prior 
settings are not at all informative, they do still make some 
assumption of equality in the specification of the latent class 
sizes. As a result, we have deemed these two prior condi
tions to be aligned with the true structure (with row 1 
loosely aligned through the diffuse nature of the priors and 
row 2 more closely aligned with the informative nature of 
the priors).

Row 3 presents results from priors that are misaligned 
with the true class proportion structure. Specifically, these 
prior settings reflect a majority class with 70% of the cases 
and a minority class with 30% of the cases. The “aligned” 
versus “misaligned” prior specification types should be kept 
in mind when interpreting the results. In focusing on the 
first three rows, it is clear that there are differences in index 
performance. Likewise, there are some interesting interac
tions that result from class separation and prior type.

Figure 3. Selection rates for n¼ 150.
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Overall, the EAIC, LOOIC, and WAIC showed consistent 
performance with just slight improvements as separation 
increased across the columns. The EBIC’s performance was 
worse under the smallest separation condition, but it 
improved with moderate and high separation.

Perhaps the most interesting elements that were uncov
ered here were linked to the performance of the DIC. For 
the aligned priors in particular, the DIC yielded the worst 
overall performance with respect to selection rate recovery 
for the correct two-class solution. Although the ability to 
properly select two classes did improve as separation 
increased, the DIC still tended toward overextraction of the 
number of latent classes. That pattern was especially the 
case for the aligned prior types, namely for diffuse and 
informative-equal priors. When the prior was misaligned, 
and assuming an unequal class proportion, the DIC’s per
formance improved. The informative priors assuming an 
equal class proportion across the classes produced similar 
results for the DIC as compared to the diffuse prior condi
tions. That was because both assumed equal class propor
tions. Albeit the diffuse settings were much less informative, 

they still assumed an equality that aligned with the truth, 
which explained the similarity in results for these two prior 
settings.

7.2.2. Unequal Class Proportions, n¼ 150
The conditions with unequal class proportions in the popula
tion are presented in Rows 4–6 in Figure 3 for n¼ 150. 
Given the unequal proportions at the population level, two of 
the three prior conditions represented a misalignment with 
respect to the class proportions. Specifically, row 4 presents 
findings from diffuse priors which, although not informative, 
do contain a notion of equal class sizes. Row 5 presents 
results for the informative prior that assumed equal class pro
portions, which was a stronger misalignment with the true 
nature of the class structure. The last row in Figure 3
presents the informative prior with unequal class proportions, 
and it is aligned with the true structure of the class propor
tions at the population level (assuming a split of 70%/30%).

The EAIC and EBIC recovered the correct class solution 
more accurately as class separation increased. Patterns 
indicated that there was a preference for underextraction 

Figure 4. Selection rates for n¼ 300.
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(1-class model) when class separation levels were poor, but 
the selection rate improved (favoring the 2-class solution) as 
class separation increased. Between the EAIC and EBIC, the 
EBIC was less sensitive to misaligned priors. The LOOIC 
and WAIC performed similarly to one another in these con
ditions of unequal class proportions. There was a higher 
tendency to overextract the number of classes with mis
aligned priors (diffuse and informative-equal settings).

Overall, the DIC was largely unaffected by class separ
ation in these conditions, with some minor exceptions. 
Overextraction for the DIC was more likely under diffuse 
prior conditions, as well as the misaligned priors (i.e., 
informative with equal class proportions defined in the prior 
settings). In the case of the diffuse prior settings, the priors 
for the class proportions provided a weak equality assump
tion, and this assumption was enough to produce much 
higher levels of overextraction for the DIC. The DIC per
formed best under the prior setting that aligned with the 
true class structure (row 6), showing less tendency to over
extract as compared to the misaligned priors in Rows 4 and 
5. Note that although the DIC’s selection rates were 

improved under this prior condition, the accuracy rates 
were still lower compared to the other indices examined.

7.2.3. Comparison: Equal vs. Unequal Class Proportions, 
n¼ 150
One interesting pattern that emerged in the results was 
linked to the misaligned prior settings for the class propor
tions. For the equal class proportion conditions, the mis
aligned priors are in row 3 (informative and unequal 
proportions in the priors). For the unequal class proportion 
conditions, the misaligned priors are in row 4 (weak specifi
cation of equality in class sizes, albeit diffuse prior setting) 
and row 5 (informative priors with equal class proportions 
specified). As a comparison, we examined Rows 3 and 5 a 
bit closer since they each represented informative priors 
with incorrect class proportions specified. Row 3 pretty 
clearly shows that all indices were correctly aligned with the 
2-class solution. Interestingly, row 5 shows, compared to 
row 3, a very different pattern of results. The findings indi
cated that incorrectly specifying equal class proportions as 
being unequal via the prior did not impact the ability of the 

Figure 5. Selection rates for n¼ 900.
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indices to select the correct model according to the popula
tion model. However, the impact of a misaligned prior was 
considerable when the population settings specified unequal 
latent classes, but the prior assumed equal classes. With the 
prior essentially ignoring that there was a true minority 
class and assuming equal sizes, the indices were much more 
likely to overextract the number of classes (with some 
instances of underextraction for the lowest class separation 
condition in the left plot of row 5).

7.2.4. Sample Size Considerations
The results presented above provided nuances for the 
smallest sample size of n¼ 150, which highlight the most 
variability in selection rate performance of the indices. 
However, we were also interested in examining the consist
ency of selection rate performance for each index across 
moderate and large sample sizes. The following sections 
detail the findings when sample sizes increased to a moder
ate size of n¼ 300 and to a large size of n¼ 900.

7.2.5. When n¼ 300 (Moderate Sample Size)
The patterns of index performance are presented in 
Figure 4. We first report the results for the equal class pro
portion condition, followed by the unequal class proportion 
condition. Within each condition, we examine whether the 
overall patterns changed compared to the smallest sample 
size condition (n ¼ 150) and point out any notable differen
ces. We also describe the results sequentially from the small
est to the largest class separation conditions. Finally, we 
report how these patterns varied across different prior 
conditions.

When the true class proportion was equal (first three 
rows of Figure 4) and the prior was diffuse, the overall pat
tern resembled what was observed at n ¼ 150: However, the 
DIC performed better, with a reduced tendency to overex
tract the number of classes. More replications favored either 
a 2-class solution (in the case of the highest class separation 
at 3.7 MD) or a 3-class solution (across all class separation 
conditions). The EBIC did not perform well at the smallest 
class separation of 2.7 MD, but once class separation 
reached 3.2 MD, most replications favored the 2-class solu
tion. The other indices (EAIC, LOOIC, and WAIC) consist
ently supported the 2-class solution across all levels of class 
separation. The results under the informative-equal prior 
condition largely mirrored those observed with the diffuse 
prior, with the exception that the EBIC could detect the 
true number of latent classes even at the smallest class sep
aration (MD ¼ 2.7). This pattern was consistent with the 
n ¼ 150 condition, although, as with the diffuse prior, the 
DIC’s tendency to overextract was mitigated. Finally, when 
the informative-unequal prior was used, all indices consist
ently supported the 2-class solution. These results were con
sistent with those observed at n ¼ 150:

Next, we report the results for the case of unequal class 
proportions (last three rows of Figure 4). Under the diffuse 
prior, a noticeable difference when increasing the sample 
size from 150 to 300 was that, even at the smallest class 

separation of 2.7 MD, most replications from all indices 
except the DIC correctly favored the 2-class solution. The 
DIC failed to select the 2-class solution and instead consist
ently overextracted the number of classes, with a preference 
for the 4-class solution across all class separation conditions. 
As such, the poor performance of the DIC in this condition 
remained the same as in n ¼ 150; but for the other indices, 
performance improved compared to n ¼ 150: When the 
informative-equal prior was used, which represents a large 
mismatch between the prior and the true unequal class pro
portion, only the EBIC tended to favor the true 2-class solu
tion when the class separation was at least 3.2 MD. The 
other indices did not perform well in selecting the true solu
tion. The poor performance of these indices was similar to 
that observed at n ¼ 150: Under the informative-unequal 
prior specification, where there was a match between the 
true class proportion and prior settings, all indices except 
the DIC reliably favored the 2-class solution, regardless of 
class separation. The DIC did not show reliable perform
ance, as it alternated between favoring the 2-class and the 4- 
class solutions. These patterns were again comparable to 
those observed in the smallest sample size condition.

7.2.6. When n¼ 900 (Large Sample Size)
Building on the previous comparison between cells with n ¼
150 and n ¼ 300; we examined noticeable patterns that 
emerged as sample size increased from n ¼ 300 (Figure 4) 
to n ¼ 900 (Figure 5). First, we focus on cells with equal 
class proportions across both sample sizes, describing the 
impact of factors such as the degree of class separation and 
class proportion prior specification. Then, we move to cells 
with unequal class proportions.

In cells with equal class proportions (first three rows of 
Figure 5), conditions with misaligned (informative-unequal) 
priors yielded the best selection rates across indices regard
less of sample size. Conversely, when using diffuse or cor
rectly specified (informative-unequal) priors, the DIC 
tended to overestimate the number of latent classes. 
Although this tendency was noticeable at n ¼ 150 and 300, 
it became more pronounced as the sample size increased. 
Moving on to other indices, the impact of class separation 
on the performance of the EAIC and EBIC differed across 
n ¼ 300 and n ¼ 900: At n ¼ 300; the performance 
improved from a small to a moderate degree of class separ
ation. In contrast, at n ¼ 900; both indices consistently 
showed the highest selection rates for the correct class struc
ture (i.e., 2-class), regardless of the class separation. In other 
words, given a large sample size (n ¼ 900), class separation 
had nearly no impact on performance, compared to smaller 
sample sizes, which performed better under—at least—a 
moderate degree of class separation. Regarding the LOOIC 
and WAIC, diffuse and correctly specified (informative- 
equal) priors resulted in a higher rate of model over- 
specification across both sample size conditions compared 
to misaligned (informative-unequal) priors.

Shifting to cells with unequal class proportions (last three 
rows of Figure 5), the best performance across indices 
occurred in cells with informative-unequal priors—that is, 
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correctly specified class proportion priors. Specifically, the 
EAIC and EBIC performed best under diffuse and correctly 
specified (informative-unequal) prior settings. On the con
trary, cells with misaligned (informative-equal) priors dem
onstrated the worst performance with a tendency to 
overextract the number of latent classes across indices. 
Notably, under misaligned (informative-equal) priors, the 
preference of all indices for over-specified solutions became 
more noticeable when moving from n ¼ 300 to n ¼ 900:
This pattern was especially discernible for the EBIC. In the 
same vein, the selection rate of the DIC, LOOIC, and 
WAIC for over-specified solutions was greater under diffuse 
and mismatched (informative-equal) priors relative to cor
rect priors (informative-unequal), suggesting a higher sensi
tivity of these indices to misaligned priors. Similar to the 
equal cells, the DIC tended to consistently overextract the 
number of latent classes.

Informative-unequal class proportion prior settings 
yielded the best performance across all indices—regardless 
of the actual class proportions (equal versus unequal)—for 
both sample sizes of (n ¼ 300) and (n ¼ 900). The DIC per
formed best under conditions of equal class proportions 
when using informative unequal class proportion priors. In 
summary, informative unequal prior settings provided the 
best overall performance across indices, irrespective of sam
ple size or empirical class proportions, but the best results 
for the DIC were achieved with a combination of equal class 
proportions and informative unequal priors.

8. Secondary Investigation

As the primary simulation demonstrated a pronounced 
impact of class proportions on the performance of Bayesian 
model selection indices, it is important to examine whether 
these patterns generalize to even more extreme scenarios. 
To this end, we conducted a secondary simulation study 
incorporating a markedly imbalanced class structure (i.e., a 
90/10 split), which reflects conditions that are plausible 
(e.g., Henson et al., 2007; Tueller & Lubke, 2010). This add
itional examination allows for a more practical evaluation of 
model selection behavior under severely unequal class 
proportions.

8.1. Simulation Design

We adopted the same data-generating model shown in 
Figure 1, using identical population parameter values as 
those listed in Table 1, except for the threshold values 
required to produce the 90/10 class proportion. The second
ary simulation manipulated one extreme unequal class pro
portion condition (9:1 ratio), a single medium sample size 
(300), three levels of class separation (MD ¼ 2.7, 3.2, and 
3.7), and four candidate class solutions (1-class, 2-class, 
3-class, and 4-class models). For the 2-, 3-, and 4-class 
models, three types of prior specifications were considered: 
diffuse, informative-equal, and informative-unequal. For the 
1-class model, only a diffuse prior was used. These 
design factors yielded a total of 3 (from 1-class) þ 27 (from 

2–4-class) ¼ 30 unique simulation conditions. The hyper
parameter settings for the diffuse and informative-equal 
prior specifications were the same as those shown in Table 
2, whereas the settings for the informative-unequal priors 
are summarized in Table 3. Each condition was replicated 
100 times. While the number of replications was smaller 
than that in the primary simulation study, it was deemed 
sufficient for the purpose of evaluating whether patterns 
observed in the primary results generalize to more extreme 
conditions.

Data generation and Bayesian model estimation were 
conducted in Mplus Version 8.7 (L. K. Muth�en & Muth�en, 
1998–2017). To avoid between-chain label switching, models 
were estimated using a single Markov chain with 40,000 
iterations, with the first 20,000 discarded as burn-in. To pre
vent within-chain label switching, parameter identifiability 
constraints were imposed such that the intercept for Class 1 
was constrained to be greater than that of Class 2 for mod
els with two or more classes. To address potential issues 
with parameter estimates becoming trapped in local max
ima, we supplied the same starting values for all class solu
tions as those used in the primary simulation study.

8.2. Simulation Results

8.2.1. Convergence Rates
Figure 6 presents convergence rates across class solutions 
for the secondary simulation with extremely unequal class 
proportions (90/10 split). Each replication was considered to 
have converged if the highest potential scale reduction factor 
across all parameters was less than 1.05. Overall, conver
gence was high for the 1-class solution under all prior speci
fications, but rates dropped considerably as the number of 
classes increased. For the 2-class models, convergence was 
somewhat stable with diffuse and informative-unequal pri
ors, but markedly lower for the informative-equal priors, 
particularly at higher levels of class separation. For 3- and 
4-class models, convergence rates declined sharply across all 
priors, with the lowest rates observed for the informative- 
equal specification. In contrast, the informative-unequal 
priors consistently yielded the most favorable convergence 
patterns, maintaining moderate rates even under the more 
complex class solutions.

Table 3. Informative unequal prior specification for the 90/10 class proportion 
condition in the secondary simulation.

Class solution Informative unequal

n ¼ 150
2-class Dð135, 15Þ
3-class Dð135, 10, 5Þ
4-class Dð135, 5, 5, 5Þ

n ¼ 300
2-class Dð270, 30Þ
3-class Dð270, 20, 10Þ
4-class Dð270, 10, 10, 10Þ

n ¼ 900
2-class Dð810, 90Þ
3-class Dð810, 60, 30Þ
4-class Dð810, 30, 30, 30Þ

Note. The true number of classes was two, with 9:1 class proportions for 
extremely unequal conditions.
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These patterns suggest that the severe class imbalance 
created additional challenges for model estimation, espe
cially when priors did not align with the underlying unequal 
class structure. However, the informative-unequal priors 
provided some protection against convergence failures rela
tive to the diffuse and informative-equal priors.

8.2.2. Selection Rates
Figure 7 summarizes model selection rates under the 
extreme 90/10 class imbalance across levels of class separ
ation and prior specifications. For the diffuse priors (top 
row), the information criteria were inconsistent, with selec
tion spread across the 2-, 3-, and 4-class models. The EAIC 
and EBIC consistently selected the true 2-class model, and 
the LOOIC and WAIC experienced improvements as class 
separation increased (with the poorest separation condition 
tending to align with over-extraction for these indices). The 
DIC struggled under these conditions and had a strong ten
dency to over-extract.

For informative-equal priors (middle row), the true 
model solution is the least selected by all indices. The incor
rect prior settings for the class proportions appear to 
strongly interact with the ability for indices to properly 
define the class structure.

Finally, for the informative-unequal prior settings (bot
tom row), we see very clear patterns of proper selection 
rates for all indices. The DIC still shows a slight tendency of 
over-extraction (especially clear for MD ¼ 3.7), but the pat
tern of results is quite clear.

Overall, these findings highlight that class proportion pri
ors play a critical role under severe imbalance: Informative- 
unequal priors consistently identified the true model, 
whereas diffuse and informative-equal priors led to unstable 
and often incorrect solutions.

9. Discussion

Several consistent patterns emerged across our findings. As 
anticipated, index performance improved substantially with 
increasing sample size, yielding clearer and more interpret
able results in larger sample conditions (a pattern that aligns 
with statistical theory regarding power and precision).

The LOOIC and WAIC demonstrated superior perform
ance in detecting class structure inconsistencies across most 
conditions. However, these indices struggled when faced 
with the specific challenge of unequal empirical class pro
portions paired with priors specifying equal class distribu
tions. This misalignment between population characteristics 
and prior specifications proved particularly problematic for 

Figure 6. Convergence results for the secondary simulation.
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both the LOOIC and WAIC. Moreover, the impact of prior 
misalignment varied depending on whether the data con
tained a minority class or featured relatively equal class 
sizes. These findings highlight the critical importance of 
considering relative class proportions when selecting indices 
for determining appropriate class structure.

The EAIC emerged as a consistently reliable index across 
conditions, accurately detecting class structure inconsisten
cies in most modeling scenarios. In contrast, the EBIC dem
onstrated limitations in identifying correct class solutions, 
particularly when class separation was poor and sample size 
was small. Nevertheless, the EBIC performed adequately 
under conditions with more pronounced class separation, 
even when priors were misaligned in small and medium 
sample sizes. These patterns suggest that EBIC may still 
offer practical utility in specific contexts. This differential 
performance across separation conditions underscores the 
importance of considering multiple indices when making 
determinations about latent class structure, especially in 
datasets where class distinction may be ambiguous.

A particularly significant finding from our investigation 
concerns the performance of the DIC. Critically, this finding 
builds on earlier concerns about the shortcomings of the 
DIC (Spiegelhalter et al., 2014), providing new evidence of 
its limited robustness in the context of Bayesian mixture 
modeling. Our results demonstrate that the DIC exhibits a 
consistent tendency toward overextraction of latent classes. 
This overextraction rate increases with larger sample sizes 
under specific prior conditions, revealing an important 
three-way interaction effect between prior specifications, 
sample size, and index performance that researchers must 
consider to avoid latent class overextraction. Such overex
traction can substantially alter substantive research conclu
sions by artificially splitting classes or incorrectly assigning 

subjects to latent groups. Interestingly, there was one area 
where the DIC showed a clean solution in Figure 3. When 
the prior setting was misaligned in that it showed unequal 
class sizes but the true latent classes were equal in size, the 
DIC did not tend to overextract (row 3 of Figure 3). In this 
condition, the hyperparameter setting of the prior distribu
tion down-weighted the possibility for overextraction. 
Specifically, high hyperparameter values in the Dirichlet 
prior exert a stronger influence, drawing more posterior 
mass toward the class with larger prior weights. These find
ings underscore the importance for applied researchers to 
exercise caution when interpreting DIC results and to 
potentially consider complementary indices when determin
ing class enumeration in Bayesian mixture models.

To address concerns about “false” over-extraction (e.g., 
spurious classes of only 1–2%), we examined the estimated 
proportions of over-extracted classes in both the primary and 
secondary simulations. As summarized in Figure 8, the add
itional classes almost never appeared at such trivial sizes. In 
the 3-class models, over-extracted classes under diffuse priors 
were occasionally as small as �10%, but more often were 
larger. Under informative-equal priors, spurious classes typic
ally accounted for 20–40% of the sample. In the 4-class mod
els, the fourth class was sometimes near 10% under diffuse 
priors but rarely below that level. Thus, the over-extracted 
classes we observed generally represented non-trivial propor
tions of the sample and were not easily dismissible as nuis
ance classes. Importantly, parameter estimates for these classes 
sometimes resembled existing classes but at other times dif
fered, underscoring the need for researchers to incorporate 
substantive interpretability alongside fit indices when evaluat
ing class solutions (see e.g., Nylund-Gibson & Choi, 2018).

Overall, the simulation findings from the primary and sec
ondary investigations demonstrated that prior misalignment 

Figure 7. Selection results for the secondary simulation.
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did not simply reduce efficiency but can fundamentally dis
tort the operating characteristics of the information criteria, 
making them appear unstable or misleading. For applied 
researchers, this implies that careful attention to prior specifi
cation is critical, particularly in settings where class imbalance 
is expected. In practice, incorporating prior knowledge 
about plausible class proportions (e.g., informed by theory 
or previous data) can substantially improve the reliability 
of information-criterion–based model selection decisions, 
whereas reliance on default or misaligned priors may lead to 
systematic misclassification of model complexity.

9.1. Future Research Directions to Consider

Class enumeration remains a critical methodological consid
eration for future investigations due to its profound impact 
on substantive interpretations and findings. An incorrect 
class solution inevitably leads researchers to draw conclu
sions and make generalizations that inadequately reflect the 
population(s) under study. While model selection tools can 
facilitate the selection of an appropriate class solution, our 
investigation (though revealing important performance pat
terns across indices) highlights the need for further research 
before we fully understand class enumeration and model 
selection within the Bayesian mixture modeling framework.

One promising direction for methodological advance
ment involves developing corrections or modifications to 
indices that demonstrated limitations in detecting the cor
rect class solution. A potentially valuable approach would be 
adapting the complexity index in the DIC (specifically the 
pD parameter) to address the overextraction issues. 

Similarly, the EBIC, which proved particularly unreliable 
when class separation was poor, warrants reexamination. Its 
current formulation appears insufficiently sensitive to proper 
class structure, indicating a clear area for improvement.

Another valuable extension of this work would be com
paring these indices’ performance against alternative 
Bayesian modeling strategies. Specifically, semi- and non- 
parametric approaches for mixture models utilizing revers
ible jump Markov chain Monte Carlo or Dirichlet process 
algorithms have shown promising utility for latent mixture 
models (Ho & Hu, 2008; Ishwaran, 2000; Qiu et al., 2025; 
X.-Y. Song et al., 2011; X. Song et al., 2018; Yang & 
Dunson, 2010). However, these approaches tend to favor 
underextraction (X. Song et al., 2018). A comprehensive 
comparison would provide valuable insights regarding opti
mal analytical strategies: whether to employ model selection 
indices or estimate latent class numbers directly using speci
alized class estimation algorithms.

An additional area in need of future research is a more 
in depth investigation on how settings for the prior distribu
tions for all model parameters (not just the class propor
tions) impact of the performance of the information criteria. 
Some previous work (see e.g., Depaoli, 2013; Lee & Harring, 
2023) has indicated that priors placed elsewhere in the 
model (e.g., on growth parameter means, variances, or cova
riances) can impact parameter recovery. It follows that prior 
sensitivity analysis for these other model parameters may 
uncover performance patterns for the information criteria 
that impacts our understanding of model selection. We rec
ommend that researchers examine this issue through a sys
tematic sensitivity analysis of different prior forms and 

Figure 8. Proportion of overextracted classes in the secondary simulation.
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hyperparameter settings on all model parameters. That work 
would create a more complete picture of index performance 
and the interaction between prior distributions and class 
enumeration.

A limitation of our current investigation is its exclusive 
focus on linear LGMMs. Future research should examine 
whether index performance patterns generalize across other 
SEM-based mixture models, including mixture SEM, latent 
class analysis models, nonlinear growth mixture models, and 
mixture confirmatory factor analysis (e.g., Heo et al., 2024; 
Tueller & Lubke, 2010; Whittaker & Miller, 2021; Yung, 
1997). Additionally, our study did not address index per
formance in the presence of missing data, a significant 
omission given that research suggests indices can be sub
stantially affected by missingness (see, e.g., Heo et al., 2024; 
Winter & Depaoli, 2022). This issue deserves thorough 
exploration in future work to develop a comprehensive 
understanding of these indices’ performance in applied 
research contexts, where missing data represent the norm 
rather than the exception.
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