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ABSTRACT

Class enumeration remains one of the most critical and error-prone steps in latent growth mixture
modeling (LGMM), particularly within the Bayesian framework. This study provides a comprehensive
simulation-based evaluation of Bayesian model selection indices, focusing on the impact of likelihood
formulation (marginal used in this case) and Dirichlet prior specification for class proportions.
Although Bayesian methods offer flexibility and robustness in estimating complex models, missteps in
class enumeration or inappropriate prior specification can bias results, mislead substantive conclusions,
and impair model fit. We systematically varied true population structures and prior specifications to
assess how these factors interact to affect model selection accuracy across various indices. We exam-
ined the performance of several Bayesian indices: the deviance information criterion (DIC), the
Watanabe-Akaike information criterion (WAIC), the leave-one-out information criterion (LOOIC), the
expected Akaike information criterion (EAIC), and the expected Bayesian information criterion (EBIC).
Our study contributes practical recommendations for researchers conducting Bayesian LGMM, high-
lighting methodological best practices and key areas for further development with respect to model
comparison and selection indices in the Bayesian framework. These results advance our understanding
of model selection behavior in complex Bayesian mixture models and provide a foundation for
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improving estimation and inference in applied research.

Model misspecification within structural equation modeling
(SEM) remains a critical and persistent area of methodological
research (e.g., Cao & Liang, 2022; Depaoli et al, 2024; Liu,
Heo, Depaoli, et al., 2025; McNeish & Harring, 2017; West
et al, 2012). Numerous specification challenges, including
errors in both measurement and structural components, can
compromise research quality, undermine the accuracy of par-
ameter estimation and model selection, and ultimately lead to
misleading substantive research conclusions (Cain & Zhang,
2019; Depaoli et al., 2023, 2024; Heo et al, 2024; Liu, Heo,
Depaoli, et al., 2025; Liu, Heo, Ivanov, et al.,, 2025; McNeish &
Harring, 2017; Winter & Depaoli, 2022). These issues become
even more complex and pose substantial challenges to research-
ers when SEM incorporates finite mixture modeling to address
unobserved latent classes and thus account for population het-
erogeneity. In such contexts, the risk of misspecification
expands beyond ensuring proper measurement and structural
specification. Researchers must carefully consider how to esti-
mate and select the appropriate latent class structure.

One widely used modeling framework that embodies both
SEM and mixture modeling is the latent growth mixture
model (LGMM; B. Muthén, 2001; B. Muthén et al, 1998),
which combines longitudinal data analysis with class-based
heterogeneity to uncover distinct latent trajectory classes over
time. Within the LGMM framework, one of the most central

challenges is class enumeration—identifying, specifying, and
selecting the optimal number of latent classes. Class enumer-
ation errors can manifest in either overextraction or underex-
traction of latent classes, resulting in convergence problems,
estimation bias, and misclassification. From a frequentist per-
spective, these methodological issues have been extensively
documented (McNeish, 2023; McNeish & Harring, 2017;
Nylund-Gibson & Choi, 2018; Tueller & Lubke, 2010), and
various model selection indices have been evaluated for their
effectiveness in detecting class structure misspecification
(Nylund et al., 2007). As such, model specification in the finite
mixture modeling framework should additionally regard the
reliability and validity of latent class solutions. The ability to
properly detect model class structures is directly intertwined
with the ability to correctly interpret latent group differences
and generalize findings.

Over the past two decades, following Nylund et al’s
foundational contribution, significant advancements in
estimation techniques have extended into Bayesian frame-
works. Bayesian estimation has gained increasing popularity
in SEM (i.e., Bayesian SEM) and mixture modeling due
to its flexibility, its capability to incorporate prior
information, and its robust handling of model complexity
(Depaoli, 2013, 2014; S.-Y. Kim, 2014; S.-Y. Kim et al,
2013; S. Kim et al, 2022; Kohli et al., 2015; Tong et al,
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2022; Tong & Ke, 2016, 2021; Tong & Zhang, 2020).
However, the implementation of Bayesian LGMM introdu-
ces two underappreciated yet critical sources of model vul-
nerability. First, model misspecification due to incorrect
class enumeration persists in the Bayesian context, often
compounded by the choice of fit indices and how the likeli-
hood of those indices is formulated (Merkle et al., 2019;
Tong et al., 2022). Second, the specification of prior distri-
butions, particularly those governing class proportions via
the Dirichlet prior, introduces an additional layer of com-
plexity. When these priors are misaligned with the true
population structure (e.g., assuming equal class proportions
when the population is highly imbalanced), they can bias
class assignment, model fit, and selection outcomes
(Depaoli, 2013, 2014; Depaoli et al., 2017; S. Kim et al,
2021; Tong et al,, 2022).

Prior research has begun to address the first issue. For
instance, Tong et al. (2022) examined how likelihood for-
mulation (marginal vs. conditional) affects the performance
of Bayesian model selection indices in the context of class
enumeration in LGMMs. Their findings indicated that mar-
ginal likelihood-based model selection indices generally out-
perform their conditional counterparts, which resonated
with similar findings found in other non-mixture SEM
models (Merkle et al.,, 2019). However, this topic still calls
for extensive simulation. Moreover, the influence of prior
specifications, particularly how priors on class proportion
and population characteristics affect the performance of
model selection indices, has not yet been considered, an
issue we turn to next.

Critically, the second issue—prior (mis)alignment—
remains virtually unexplored in the Bayesian LGMM litera-
ture. Although the use of Dirichlet priors is widespread
(Depaoli, 2013; Depaoli et al., 2017; Tong et al., 2022; Van
Erp et al, 2018; Yang & Dunson, 2010), little is known
about how mismatches between prior assumptions and true
population class proportions influence model performance.
To illustrate, when the population includes a minority class
but the prior assumes equal class sizes, the resulting poster-
ior estimates may underrepresent that minority class and
lead to underextraction of latent classes. In a similar vein,
using highly informative but incorrect priors for class pro-
portions can distort model fit assessments and compromise
class recovery. The reality is that there will likely be some
degree of mismatch with the prior in applied settings, since
the true population-level proportions are unknown. Despite
its theoretical and practical relevance, this issue of prior
misalignment has received minimal attention in methodo-
logical research.

The present study addresses both of these methodo-
logical challenges in tandem. Our investigation evaluates
the performance of a broad set of Bayesian model selection
indices, all computed using marginal likelihoods—a choice
we justify based on its conceptual consistency with tradi-
tional SEM practices (as elaborated in subsequent sections)
and its favorable performance demonstrated in findings by
Tong et al. (2022); Merkle et al., 2019; Du et al. (2024).
Our particular focus is on examining the consistency and

accuracy of these indices in detecting latent class structure
misspecification under different scenarios of prior settings.
To this end, we conduct a comprehensive simulation study
that systematically manipulates design factors, including (1)
model (mis)specification in class enumeration and (2)
(mis)alignment between population-level class proportions
and those specified via the Dirichlet prior. Our simulation
design improves upon prior work by systematically investi-
gating how model misspecification and prior misalignment
interact to affect model convergence and the selection of
the true latent class solution. To our knowledge, this is the
first study to explicitly assess the impact of prior misalign-
ment on class enumeration in Bayesian LGMMs. Our hope
is that the current findings will help researchers make
more informed decisions regarding class enumeration,
latent class solution selection, and the thoughtful specifica-
tion of priors in applied settings—recognizing that
priors may not always align perfectly with population char-
acteristics and thus require practical, data-informed
guidance.

1. Organization of the Current Investigation

This paper is organized as follows. We first begin with an
overview of the benefits of Bayesian estimation for latent
variable models, and then extend this discussion to the
LGMM, which is the model we focus on here. We then
present the formulation and notation for the LGMM,
including the relevant prior distributions. Next, we turn our
attention to the methods that are currently available for
detecting model (mis)fit in Bayesian latent variable model-
ing. We present notation and descriptions for the most
commonly implemented indices, which are a major focus in
the current investigation. We then tie these topics together
by presenting rationale for further exploration regarding the
use of these indices for detecting model misfit in the
LGMM. That links directly to the simulation design and
results, which are presented next, including a secondary
simulation examining an extreme yet realistic research sce-
nario. We conclude the paper with a discussion of our find-
ings, points that applied researchers should consider when
implementing these indices in practice, and recommenda-
tions for future methodological developments regarding fit
and assessment measures in the Bayesian estimation
framework.

2. Benefits of Bayesian Estimation for Latent
Variable Models

Several seminal papers have been written about the general
benefits of Bayesian methods (see, e.g., Carlin & Louis,
2000; Gelman et al, 2014; B. O. Muthén & Asparouhov,
2012; van de Schoot et al., 2017; 2021). In addition, the
popularity of this framework has been steadily on the rise,
especially for SEM (van de Schoot et al, 2017). There are
many potential reasons for increased use and exposure to
these methods with SEM, and we briefly highlight the most
relevant reasons here.



Within SEM, model complexity is tied to accurate par-
ameter recovery and convergence issues (S.-Y. Kim et al,
2013). More complex models can produce problems with
convergence, and there can also be issues with obtaining
inaccurate parameter estimates (sometimes due to the non-
convergence issue and sometimes not). Bayesian methods
have been shown to aid in solving these issues in a variety
of different SEM model-forms (see, e.g., S.-Y. Kim et al,
2013). In addition, SEM has been discussed in a much more
flexible manner in the Bayesian framework (B. O. Muthén
& Asparouhov, 2012), where processes requiring strict
model constraints (e.g., model invariance testing) can be
carried out in a more flexible, or approximate, manner
through the implementation of priors.

One area where Bayesian methods have shown to be of
particular benefit is in the estimation of latent mixture mod-
els. Specifically, mixture (or latent class) models carry an
added complexity of estimating the class structure.
Researchers often rely on substantive knowledge and a col-
lection of model fit or assessment measures to help deter-
mine the number of latent classes from a set of possible
solutions. Previous simulation research by Depaoli (2013)
has shown that, even when estimating the correct number
of latent classes, it can be difficult to properly estimate the
size of those latent classes via class proportion estimates.
That estimation accuracy issue is tied to factors such as the
number of classes, whether there is a strong majority class
(ie., a class with a much larger proportion of cases
assigned) or a minority class, and also separation—the con-
cept of how overlapping, or distinctive, latent classes are
from one another. Especially when class proportions are
quite different across latent groups (e.g., there is a very large
or very small class), and separation is more difficult to dis-
tinguish, the Bayesian framework has been shown to greatly
enhance the accuracy of results (Depaoli, 2013, 2014;
Depaoli et al,, 2017; S. Kim et al,, 2021; Tong et al., 2022).
The use of priors, particularly for the latent class propor-
tions, appears to benefit the results beyond what can be pro-
duced using conventional estimation techniques. However,
the selection and implementation of these priors should be
done with intent and transparency, as even a slight modifi-
cation of the hyperparameters can alter the findings
(Depaoli et al., 2017).

3. The Latent Growth Mixture Model: Notation and
Priors

The LGMM can be used for tracking change patterns over
time, and the mixture component acts as an extension to
the simpler latent growth curve model (which does not
include latent classes). This section borrows notation
detailed in Depaoli (2021). For the LGMM, the data are
assumed to have been generated from a mixture distribu-
tion, where there are ¢ = 1,2, ..., C latent classes of propor-
tion 7., each allowed its own set of parameters as detailed
in the model equations. The model can be separated into a
measurement and a structural part of the model. The meas-
urement part of the model can be written as:
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yic == ,V”ic + €ic, (1)

where y, is a vector of observed repeated-measure data for
person i in latent class ¢, A, is a T X m matrix of factor
loadings (T = number of time points; m = number of latent
factors). Column 1 in A, is fixed to I’s, and the remaining
m—1 columns contain information about the time scale
and slope shape for data collection (e.g., 0, 1, 2, 3 for four
equally spaced time points and a linear slope). The vector,
1;., contains the m latent growth parameters (e.g., intercept
and slope), and € is a vector of normally distributed meas-
urement errors (assumed centered at zero).
The structural part of the model is as follows:

nic = & + Cic! (2)

where vector #,, still contains the growth parameters, a, is a
vector of factor means, and §;. is a vector of normally dis-
tributed (centered at zero) deviations of parameters from
their population means. The reduced form of the equation
is:

Yie = A)’(“c +&ic) + € 3)

From this formulation, the model-implied mean and
covariance can be respectively written as follows:

”c(o) = Ayaw (4)
Z.(0) = A\¥,A, + O, (5)

where {;. can be omitted, as the expectation of # is equal to
a. Here, p (0) is the mean vector of the y’s, and X.(0) is the
covariance matrix of the y’s. Further, ‘¥, is the latent factor
covariance matrix, and the covariance matrix for the mani-
fest variable errors is . In this expression, the latent fac-
tor covariance matrix does not contain a ¢ subscript, which
indicates homogeneity across classes, but this can be relaxed
by adding a ¢ subscript. Figure 1 shows a diagram of the
basic form of the LGMM.

The LGMM can be implemented in the frequentist or
Bayesian estimation frameworks. For Bayesian estimation,
model priors must be defined for each parameter in the
model. The most common model priors for the main ele-
ments of the LGMM are as follows:

T~ D[dldc},
66,, ~ Ig [aﬁmx b(ﬂm] >

The latent class proportion for each class is denoted =,
and the vector of class proportions for all C classes (7) is
typically modeled using a Dirichlet (D) distribution. The
Dirichlet distribution hyperparameters (d,...,d¢) represent
hyperparameters reflecting the class sizes. Depending on the
software implemented, these hyperparameters may be
formed in terms of proportions, number of people, or
thresholds. An extensive discussion of these differences is
provided in Chapter 10 of Depaoli (2021). The growth
factor means («) are typically assumed normally
distributed (N). Here, . is the latent factor mean for
factor m =1,...,M and latent class ¢ =1,...,C. The two
hyperparameters are u, —(expectation for the factor mean;
mean hyperparameter) and ¢ (variance hyperparameter).

2
e ~ N[fom»% ]

me

¥, ~ IW[Y, 1.
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Figure 1. Latent growth mixture model.

Next, O, (error variance matrix) can be linked to a prior.
When the error variances are assumed uncorrelated, then
univariate priors can be placed on the individual elements
in O, denoted as 0., (representing an individual element
in the r x r matrix). The prior for this element is typically
defined by an inverse gamma (ZG) distribution, with hyper-
parameters representing the shape (ag,, ) and scale (by, ) of
the distribution. Finally, ¥, is the latent factor covariance
matrix and it can receive the inverse Wishart (ZW) prior
distribution, with hyperparameters representing a positive
definite matrix of size p (W) and degrees of freedom (v).
Just as with any prior, this one can be set to vary across
latent classes if desired. In all cases, manipulating the hyper-
parameters controls the level of (un)certainty or inform-
ativeness in the corresponding prior distribution.

4, Information Criteria in the Bayesian Framework

The current investigation examines the ability of a variety of
Bayesian information criteria as model selection indices to
identify proper class enumeration (e.g., correct number of
latent classes to reflect the population). We included several
indices here to provide a full landscape and comparison for
commonly implemented tools. Next, we present details for
the deviance information criterion (DIC; Spiegelhalter et al.,
2002), the Watanabe-Akaike information criterion (WAIC;

Watanabe, 2010), the leave-one-out information criterion
(LOOIC; Vehtari et al., 2017), the expected Akaike informa-
tion criterion (EAIC; Carlin & Louis, 2000) and the
expected Bayesian information criterion (EBIC; Carlin &
Louis, 2000), where the EAIC and EBIC are a Bayesian ana-
log of the Akaike information criterion (AIC; Akaike, 1974)
and the Bayesian information criterion (BIC; Schwarz,
1978), and incorporates the expectation over the posterior
distribution of model parameters (Carlin & Louis, 2000;
Spiegelhalter et al., 2002). In all cases, the information crite-
ria are interpreted in the same way. Specifically, lower esti-
mates correspond with the optimal model when comparing
information criteria values across several competing models.

In this study, the information criterion is computed
based on the marginal likelihood. For the LGMM, the mar-
ginal likelihood is defined as

n C
L(m0ly) = [[ > = pyiln(6).2:(6)),

i=1 =1
where © = (71, 7,, ..., ic) is the vector of class proportions,
constrained such that chzl 7. = 1. The parameter vector 6
includes all the model parameters, such as the class-specific
mean o, and the covariance matrices W, of the latent inter-
cept and slope, and the residual variances ®,.. The function
p(y;lu.(60),2:(0)) denotes the likelihood of observation vy;
given the model implied means u, () and covariance matrix
2.(0) of class c.

Given a set of posterior samples (', 0'),

(n2,0°%), ..., (n5,0%) for model parameters, we would obtain a
sample for the log-likelihood D with Df(r, @) = D(=n*, &),

D’(m,0) = —2log (L(=, @°ly)).

4.1. DIC

The DIC was proposed by Spiegelhalter et al. (2002) to
evaluate the fit of the Bayesian model while considering the
complexity of the model, despite some arguments on its
robustness (Spiegelhalter et al., 2014). The DIC can be writ-
ten in the following two equivalent forms with (%, ) being
the posterior mean of the model parameters,

DIC = D(n,0) + pp or DIC = D(#,0) + 2pp,

with pp representing the complexity of the model, which is
defined as the discrepancy between the mean of the devi-
ance D(m,0) and deviance evaluated at the posterior mean
of the model parameters, pp, = D(m, 0) — D(#,0).

4.2. WAIC

The WAIC was proposed by Watanabe (2010) and is com-
puted based on the log-pointwise predictive density. WAIC
offers several advantages, including being invariant to the
reparameterization and applicability to singular models
where DIC may fail (Gelman et al, 2014; Vehtari et al,
2017).



For a mixture model, the WAIC is defined as:
WAIC = —2lppd + 2pwaic, (6)

where the log-pointwise predictive density (Ippd) is

n 1 S
Ippd = log (gzwilni 05)>, 7)
i=1 s=1

where S is the number of posterior samples, and (7, 6°)
represents the s-th posterior draw. The effective number of
parameters, pwaic, serves as the penalty of a model com-
plexity and is calculated as the sum of posterior variances of
the log-likelihood across data points:

. 1 5 S 1 > S S
pwaic = ZgZ(lOgP()’iW’ ) - gz logp(yil=’, 6°))".
i=1 s=1 s=1

Thus, the WAIC provides an estimate of out-of-sample
predictive accuracy while adjusting for model complexity.

4.3. LOOIC

The LOOIC is a Bayesian model selection index based on
leave-one-out cross-validation (Vehtari et al.,, 2017). It pro-
vides an estimate of out-of-sample predictive accuracy and
is computed as:

LOOIC = -2 elpd,,, (8)

where the expected log pointwise predictive density (elpd)
under leave-one-out cross-validation is defined as

elpdi,, = Y _ logp(y,ly_,) Z log <Jp(y 10) (0|y_,-)d0>,
i=1

where p(y;|y_;) denotes the leave-one-out predictive density
for observation y; given the dataset excluding the ith
observation.

In practice, this quantity is estimated using Pareto-
smoothed importance sampling (PSIS; Vehtari et al., 2017).
The PSIS-based estimate of the expected log-pointwise pre-
dictive density is given by:

— ) (7
elpdpsis-loo Z log <SIZ—P(E)):|)> 5
s=1

where ;] are importance sampling weights. This estimation
is implemented in the loo package in R (Vehtari et al.,
2017)

4.4. EAIC

The EAIC is an extension of the AIC that incorporates pos-
terior expectations, making it suitable for use in a Bayesian
framework (e.g., Carlin & Louis, 2000). Like the AIC, the
EAIC balances model fit and complexity but is computed
using Bayesian posterior samples rather than point
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estimates.

(7%, 0%), ...,

n 1 S
EAIC = -2 Z <§Z log p(y;|=", 05)) + 2 peaic,
i=1 s=1

where the effective number of parameters is given by:

Given the posterior samples (n',0'),
(n5,0°%), the sample-level EAIC is computed as:

n

1< .
peaic = » [g >~ logp(y,|n',6) — IOgP(Yi|ﬂ>9)],
s=1

i=1

and 7 and 0 denote the posterior means of the parameters.

4.5. EBIC

The EBIC (Carlin & Louis, 2000) is conceptually similar to

the EAIC, but it employs a different penalty term that grows

with sample size, following the spirit of the BIC. Both crite-

ria use posterior samples to account for model uncertainty.
The sample-level EBIC is defined as:

N s
1
EBIC = -2 E (g § lOgP(Yi|nS>05)> + log (n) - pesics
i=1 \° =1

where the effective number of parameters is given by:

n

1< ) .
pesic = ) lgz log p(y;|n*, 0°) — logp(yilmﬂ)]»
i=1 |”s=1
and # and 0 represent the posterior means of the model
parameters.

4.6. Marginal vs. Conditional Likelihoods for
Information Criteria

In the current study, the information criteria are computed
based on the marginal likelihood, integrating over the ran-
dom components, including the latent growth factors and
class assignments. We acknowledge that these fit indices
can, in general, be defined for any form of the likelihood,
including the conditional likelihood given the latent growth
factors and class assignments (Celeux et al., 2006; Gelman
et al., 2014; Spiegelhalter et al., 2002).

In existing software for Bayesian SEM, such as JAGS,
BUGS, or Stan (Carpenter et al., 2017; D. J. Lunn et al,
2000; D. Lunn et al.,, 2012; Plummer, 2003), the deviance is
typically computed based on the conditional likelihood
(Merkle et al., 2019). However, treating latent factor scores
and class memberships as actual parameters of interest can
lead to substantially different assessments of model com-
plexity. In the general SEM framework, latent factor scores
are not considered model parameters. Consequently, the fit
indices in the frequentist SEM tradition are all based on the
marginal likelihood, where the latent variables are
integrated.

To maintain consistency with the frequentist framework
and likelihood-based fit indices, we computed the informa-
tion criteria based on the marginal likelihood. This
approach aligns with recent discussions in the literature. For
example, Tong et al. (2022) investigated the impact of using
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marginal versus conditional likelihoods on class enumer-
ation in Bayesian LGMMs and found that marginal
likelihood-based indices such as the DIC, WAIC, and leave-
one-out cross-validation outperformed their conditional
counterparts. These findings are consistent with earlier
results from non-mixture SEM models (Du et al, 2024;
Merkle et al., 2019), which also emphasized the limitations
of conditional likelihood-based comparisons. This distinc-
tion is important, as it can substantially influence model
selection outcomes. In line with these recommendations,
our implementation relies on marginal likelihoods for all
model selection index computations to maintain conceptual
coherence with the SEM tradition.

5. Brief Literature Recap

Previous literature has focused on the performance of vari-
ous information criteria in terms of model misspecification
and class enumeration. Specifically, the majority of the
Bayesian work has focused on the DIC, BIC, EAIC, EBIC,
and others in non-mixture models, such as confirmatory
factor analysis (CFA), SEM, latent growth curve modeling
(LGCM), and item response theory (IRT). Key findings
reveal nuanced performance variations across different
model specifications, prior selections, and sample sizes.

For example, Cain and Zhang noted that within SEM,
the true model detection rates of the DIC against underfit-
ting models improved as the sample size, model size, and
degree of model misspecification increased. Informative pri-
ors were found to be superior to diffuse priors, although
the influence of priors decreased as sample size increased.
Related to the role of priors, Liu et al. (2022) examined the
impact of priors on different locations and revealed that the
DIC is more sensitive when selecting the true model, which
was more complex than the misspecified (underfitting)
model. Moreover, several studies in LGCM compared the
performance of the BIC and DIC in various forms of mis-
specification (Depaoli et al., 2023, 2024; Heo et al., 2024;
Winter & Depaoli, 2022). Winter and Depaoli highlighted
that with a quadratic latent growth model, the BIC, and to
a lesser extent the DIC (less sensitive to sample size), pre-
ferred more parsimonious models over the true model,
while both could correctly identify the true model com-
pared with overfitting models. Depaoli et al. (2023) and
Heo et al. (2024) reached similar conclusions in the context
of the piecewise growth model. Specifically, they found that
the DIC outperformed the BIC when detecting misplace-
ment or ignorance of the change point, while both required
large sample sizes. Conversely, in the context of CFA,
Depaoli et al. (2024) found that the BIC consistently out-
performed the DIC in model selection, especially in overfit-
ting scenarios. These seemingly contradictory findings
across studies reflect the inherent complexity of evaluating
information criteria performance in Bayesian modeling, as
results can be impacted by many factors, such as the selec-
tion of priors, the nature of model misspecification, and
sample size. Notably, a consistent pattern emerging from
these studies was that the BIC tended to prefer

parsimonious models compared to the DIC. The specifica-
tion of the DIC may also play a role in performance, with
Du et al. (2024) indicating that the marginal-likelihood-
based version outperformed the conditional-likelihood-based
version.

Regarding the LGMMs, in particular, studies on the per-
formance of information criteria for identifying the correct
number of classes have been found in the frequentist
framework. For example, Nylund et al. (2007) studied class
enumeration in a linear LGMM with two classes and noted
that the BIC generally worked well and outperformed the
AIC in identifying the correct number of classes, although
it was sensitive to small sample sizes. In contrast, other
studies revealed that both the AIC and BIC could perform
poorly with highly complex models, such as multiple-class
models with heterogeneous growth patterns (e.g., Peugh &
Fan, 2012; Tofighi & Enders, 2008) and multiphase
LGMMs (e.g., S.-Y. Kim, 2014). Also regarding the LGMM,
S. Kim et al. (2021) explored index performance in the
context of different variations of the model, including the
conventional LGMM formulation, t-based version (allowing
for thicker tails), and the median-based formulation of the
model. The DIC, WAIC, and LOO-CV were compared
across these model types. The authors found that proper
model selection was most consistent for the t-based and
median-based formulations of the LGMM. The conven-
tional specification of the LGMM was linked to poorer
selection accuracy among these indices, especially when
outliers were present. Overall, the literature on class enu-
meration demonstrates that the performance of information
criteria is influenced by multiple interacting factors, includ-
ing class separation, class proportion, model complexity,
sample size, and even estimation procedures (McNeish &
Harring, 2017).

The performance of additional Bayesian model selection
indices, such as the EAIC and EBIC, has previously been
evaluated in the context of IRT models. According to
Bolfarine and Bazan (2010), these two indices, along with
the DIC, demonstrated good performance in estimating abil-
ity parameters, with the DIC and EAIC performing similarly
in favoring skewed logistic IRT models. In a later study, da
Silva et al. (2019) found that the performance of the EAIC
and EBIC was sensitive to both sample size and the number
of items. As a result, the authors advised against using the
EAIC and EBIC in models with small numbers of respond-
ents or items. The performance of several common Bayesian
and non-Bayesian indices were also studied in the IRT-
framework. In particular, Luo and Al-Harbi (2017) consid-
ered the fully Bayesian indices of WAIC and LOO-CV and
found that these indices performed better than the conven-
tional methods of the likelihood ratio test, AIC, BIC, and
DIC. They further highlighted the inconsistencies in the
AIC performance for proper model detection under differ-
ent conditions such as sample size and test length. In add-
ition, Fujimoto and Falk (2024) examined the DIC, WAIC,
and LOO-CV in the context of multidimensional IRT. The
general findings suggested that the DIC favored certain IRT
models over others, even when they represented model mis-



specifications. The DIC showed much more bias and pat-
terns of incorrect model selection as compared to the
WAIC and LOO-CV.

Despite these investigations across various modeling con-
texts, an important gap remains in the literature: No study
has yet examined the performance of a broad range of
information criteria under both class enumeration and prior
misalignment within Bayesian mixture models. Since the
Bayesian indices we covered above may be helpful tools for
identifying class structures, our goal is to assess this capabil-
ity in terms of prior (mis)alignment. In the following sec-
tions, we detail a comprehensive simulation study aimed at
uncovering this methodological complexity within the
Bayesian framework.

6. Simulation Design

This study uses a simulation design to evaluate the perform-
ance of several marginal likelihood-based information crite-
ria (DIC, WAIC, LOOIC, EAIC, and EBIC) in
distinguishing correct from incorrect model specifications in
LGMMs, under conditions where the priors for true class
proportions are either aligned or misaligned. The perform-
ance of each criterion was assessed across scenarios that var-
ied three key factors: sample size (150, 300, 900), class
separation as indexed by Mahalanobis distance (2.7, 3.2,
3.7), and latent class proportions (equal vs. unequal). The
analysis model specification was manipulated along two
dimensions: the number of latent classes (1-class, 2-class, 3-
class, and 4-class solutions) and the type of prior distribu-
tions specified for class proportions. For 1-class solutions,
only a diffuse prior was used, yielding 3 (sample sizes) x 3
(class separation levels) x 2 (class proportions) x 1 (prior)
= 18 conditions. For 2-class, 3-class, and 4-class solutions,
three types of priors were examined: a diffuse prior, an
informative prior assuming equal class sizes, and an inform-
ative prior assuming unequal class sizes, resulting in 3 x 3
X 2 X 3 =54 conditions for each class solution. With three
such class solutions, this yields 54 x 3 =162 additional con-
ditions. In total, 18 (from 1-class) + 162 (from 2-4-class) =
180 unique simulation conditions were generated. Each con-
dition included 500 replications, resulting in 90,000 total
simulated datasets.

Table 1. Summary of simulation population parameters.
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6.1. Population Model

The population model was a linear LGMM, consisting of
four time points and two latent classes. The residual vari-
ance was fixed at 0.5, while the variances of the intercept
and slope were set to 18 and 2, respectively, with no covari-
ance between the growth factors (Figure 1). Population val-
ues for the LGMM were determined based on the degree of
class separation (described below; Depaoli, 2013; S.-Y. Kim,
2014; Tong et al., 2022) and are presented in Table 1.

6.2. Sample Size

We designed the study to include three different sample size
conditions: a small sample with 150 participants, a medium
sample with 300 participants, and a large sample with 900
participants. These varying sample sizes allowed for a more
comprehensive assessment of the model’'s performance
across different population sizes (Depaoli, 2013; S. Kim
et al,, 2022; Tong et al., 2022).

6.3. Class Separation

Growth parameter means were adjusted to represent three
levels of class separation, determined by the multivariate
Mabhalanobis distance (MD) obtained by
{(y _ﬂ2>l2_1(ﬂ1 _ﬂz)}l/za where 4, and p, denote the
mean vectors of the first and second latent classes, respect-
ively, and =7 is the inverse of the common covariance
matrix. These levels corresponded to a small (MD = 2.7),
moderate (MD = 3.2), and large (MD = 3.7) degree of sep-
aration between Class 1 and Class 2 (S.-Y. Kim, 2014; S.
Kim et al,, 2021; Tong et al.,, 2022). A comprehensive out-
line of the intercept and slope values for each level of class
separation is provided in Table 1. To ensure realistic and
interpretable parameter settings, we modified the intercept
and slope values for Class 2 based on the specified class sep-
aration levels and informed by population values reported
in Depaoli (2013).

6.4. Class Proportion

Previous mixture studies indicate that unequal class propor-
tions can influence both the accuracy of model selection

Simulation factor

Levels

Sample size
Class proportion

Class separation

Population intercept and slope Class 1

n = 150,300,900
Equal (50/50) Unequal (70/30)

MD = 2.7 (small), 3.2 (medium), 3.7 (large)

Bo=48 B, =3

Class 2

fo = 40.913 B, =0 (small)
fo = 37.835 B, = 0 (medium)
Po = 35.138 5; = 0 (large)

Model specification

True Model (2 class)

Estimated Models: Underspecified (1 class) and overspecified (3 and 4 class)
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and parameter recovery (Depaoli, 2013; Tueller & Lubke,
2010). Therefore, we varied the class proportions at the
population level, considering both equal (1:1) and unequal
(7:3) ratios.

6.5. Model Specification

6.5.1. Class Enumeration

We varied the model specification to include a 1-class
(underspecified), 2-class (correctly specified), 3-class, and 4-
class (overspecified) solution. This approach enabled us to
assess each index’s ability to distinguish between correct and
incorrect model specifications, including those that under-
or overestimate the number of latent classes.

6.5.2. Class Proportion Priors

The Dirichlet prior for class proportions in each solution
was set to one of three types: diffuse, informative equal, or
informative unequal. Our focus was to study the impact of
using correct versus incorrect informative priors in compari-
son to standard diffuse priors. The class proportion priors
varied across different sample sizes and model specifications,
as detailed in Table 2. Note that for the underspecified 1-
class solution, only diffuse priors were applied.

6.6. Bayesian Estimation

On Mplus Version 87 (L. K. Muthén & Muthén,
1998-2017), data were generated, and the Bayesian estima-
tion approach was implemented. Each model was estimated
using a single chain with 40,000 iterations, with the first
half discarded as burn-in. The total number of iterations
was selected based on preliminary tests of different chain
lengths to ensure adequate convergence while minimizing
unnecessary computational burden. To prevent between-
chain label switching, only one Markov chain was used. To
address within-chain label switching, parameter identifiabil-
ity constraints were applied (Cassiday et al, 2021).
Specifically, for models with two or more classes, constraints
were imposed such that the intercept of Class 1 was
restricted to be greater than that of Class 2. This ensured a
consistent ordering of latent classes across replications.

Table 2. Class proportion priors.

Class solution Diffuse Informative equal Informative unequal
n =150
2-class D(10,10) D(75,75) D(105,45)
3-class D(10,10,10)  D(50,50,50) D(105,30, 15)
4-class D(10,10,10,10) D(37.5,37.5,37.5,37.5) D(105,15,15,15)
n =300
2-class D(10,10) D(150,150) D(210,90)
3-class D(10,10,10)  D(100, 100, 100) (210,60, 30)
4-class D(10,10,10,10) D(75,75,75,75) D(210,30, 30, 30)
n =900
2-class D(10,10) D(450,450) D(630,270)
3-class D(10,10,10)  D(300,300, 300) D(630, 180, 90)
4-class D(10,10,10,10) D(225,225,225,225)  D(630,90, 90, 90)

Note. The true number of classes was two, with 1:1 class proportions for equal
conditions and 7:3 for unequal conditions.

To mitigate issues related to parameter solutions reaching
local maxima, we tested a range of custom random start val-
ues for each condition. These included sets perturbed from
the true parameter values and purely random initializations.
These strategies were used to improve the likelihood of con-
vergence to the global maximum and to reduce the risk of
local solutions. For the 2-class solution, the true parameter
values were used as starting values. For the other solutions
(1-class, 3-class, and 4-class), we specified custom initial val-
ues tailored to each model. These starting values proved
effective, consistently avoiding convergence to local solu-
tions across all replications.

Following model estimation across simulation conditions,
posterior chains were extracted from Mplus and imported
into R for the computation of marginal likelihood-based
indices. Specifically, we calculated the log-likelihoods and
implemented the DIC, EAIC, and EBIC directly in R, while
the LOOIC and WAIC were computed using the 1oo pack-
age (Vehtari et al., 2017). The log-likelihood values were
extracted from the posterior samples, so that pointwise log-
likelihoods for each observation and posterior draw were
retained, as required for the computation of the LOOIC and
WAIC.

6.7. Outcomes of Interest

Our evaluation focuses on two primary outcomes: conver-
gence rates and selection rates. Convergence rates reflect the
stability and computational feasibility of the models under
different simulation conditions, whereas selection rates
assess the accuracy of each information criterion in identify-
ing the correct number of latent classes.

To evaluate performance, the simulation manipulates two
central sources of model specification in mixture model-
ing—class enumeration and class proportion priors—across
varying levels of sample size, class separation, and
population-level class proportions. We examine how these
factors interact to influence both convergence and class enu-
meration outcomes across all model selection indices.

7. Simulation Results
7.1. Convergence Rates

Convergence rates were calculated as the proportion of rep-
lications in which the highest potential scale reduction fac-
tor (across all estimated parameters within that replication)
was below 1.05, indicating successful convergence, out of all
replications considered across simulation conditions. While
the mean convergence rate across all replications was
69.49% and the median convergence rate was 94.70%, con-
vergence rates varied across simulation conditions, as pre-
sented in Figure 2.

In Figure 2, the columns represent six conditions derived
from three sample size levels (150, 300, and 900) and two
class proportion conditions at the population level (equal vs.
unequal class proportions). The rows correspond to three
levels of class separation based on the Mahalanobis distance
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Figure 2. Convergence rates.

(MD = 2.7, 3.2, and 3.7). Within each plot, the x-axis repre-
sents the class solution, ranging from one to four classes,
while the y-axis indicates the proportion of replications that
successfully converged. Each plot contains three lines, dis-
tinguishing prior specifications: diffuse, informative-equal,
and informative-unequal.

There are several general patterns in the convergence
rates. First, a broad pattern emerged highlighting that con-
vergence rates tended to drop as the number of estimated
classes increased. For diffuse and informative-equal priors,
this pattern was especially the case. We note, however, that
for some informative-unequal prior conditions (especially
when class proportions at the population level were
unequal), convergence rates did not drop as much. We
expect this to be due to the prior specification better align-
ing with the population model. The second pattern that
emerged was that convergence rates increased as sample
sizes got larger. Third, when prior specifications aligned
with the class proportion at the population level, conver-
gence rates were higher. Lastly, convergence rates generally
increased as class separation increased; however, such an
effect was particularly pronounced when class proportions
were equal at the population level and in cases of overex-
traction (e.g., estimating three-class or four-class solutions).

For the upcoming results of selection rates, we included
only replications in which all four class solutions (i.e., 1-
through 4-class models) successfully converged. This
ensured that model comparisons were conducted across a
consistent set of competing solutions, rather than a partial
set of converged solutions. This reflects typical research

practice in which comparisons are made only among class
solutions that have reached convergence.'

7.2. Selection Rates

Results for the simulation study are presented in Figures
3-5 for sample sizes n =150, 300, and 900, respectively. The
figures are all structured the same. Columns represent the
different class separation conditions, with the smallest separ-
ation (MD = 2.7) on the left and the largest separation con-
dition (MD = 3.7) on the right. There are six rows, with
the top three rows aligning with the equal class proportion
conditions and the bottom three rows aligning with the
unequal class proportion conditions.

For the equal proportion conditions, row 1 aligns with
diffuse priors, row 2 aligns with informative priors that
assume equal class proportions (aligned with the true class
proportion structure), and row 3 aligns with informative
priors that assume unequal class proportions (misaligned
with the true class proportion structure).

For the unequal proportion conditions, row 4 aligns with
diffuse priors, row 5 aligns with informative priors that
assume equal class proportions (misaligned with the true
class proportion structure), and row 6 aligns with

"We note that an alternative treatment of convergence, in which model
selection indices were compared based on all available converged models
within each replication (rather than requiring convergence across all four class
solutions), was explored. Results under this approach are reported in the
supplementary materials at the Open Science Framework repository (https://
osf.io/2resf/).
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Figure 3. Selection rates for n = 150.

informative priors that assume unequal class proportions
(aligned with the true class proportion structure).

Within each plot, there are five lines, each representing
the model assessment indices under investigation. The out-
come presented in these plots (the y-axis) represents the
selection rates in terms of the proportion of replications
selecting either a 1, 2, 3, or 4 class solution. There is a
grayed shading in each plot highlighting that the true num-
ber of latent classes was 2 for all cells presented.

7.2.1. Equal Class Proportions, n= 150

In this section, we describe the results produced when equal
class proportions were specified in the population model.
For the 2-class structure, this implies an equal 50%/50%
split of cases into the two latent classes at the population
level. The first three rows of Figure 3 represent these cells
for n=150; sample size results for n =300 and 900 are nar-
rated in subsequent sections, but we focus initially on the
smallest sample size, which presented the most nuanced
results.

For the equal class proportion conditions, there are two
prior conditions that align with the true structure of equal
class proportions in the population. Row 1 represents dif-
fuse priors, and row 2 represents informative priors reflect-
ing equal class proportions. Although the diffuse prior
settings are not at all informative, they do still make some
assumption of equality in the specification of the latent class
sizes. As a result, we have deemed these two prior condi-
tions to be aligned with the true structure (with row 1
loosely aligned through the diffuse nature of the priors and
row 2 more closely aligned with the informative nature of
the priors).

Row 3 presents results from priors that are misaligned
with the true class proportion structure. Specifically, these
prior settings reflect a majority class with 70% of the cases
and a minority class with 30% of the cases. The “aligned”
versus “misaligned” prior specification types should be kept
in mind when interpreting the results. In focusing on the
first three rows, it is clear that there are differences in index
performance. Likewise, there are some interesting interac-
tions that result from class separation and prior type.
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Figure 4. Selection rates for n = 300.

Overall, the EAIC, LOOIC, and WAIC showed consistent
performance with just slight improvements as separation
increased across the columns. The EBIC’s performance was
worse under the smallest separation condition, but it
improved with moderate and high separation.

Perhaps the most interesting elements that were uncov-
ered here were linked to the performance of the DIC. For
the aligned priors in particular, the DIC yielded the worst
overall performance with respect to selection rate recovery
for the correct two-class solution. Although the ability to
properly select two classes did improve as separation
increased, the DIC still tended toward overextraction of the
number of latent classes. That pattern was especially the
case for the aligned prior types, namely for diffuse and
informative-equal priors. When the prior was misaligned,
and assuming an unequal class proportion, the DIC’s per-
formance improved. The informative priors assuming an
equal class proportion across the classes produced similar
results for the DIC as compared to the diffuse prior condi-
tions. That was because both assumed equal class propor-
tions. Albeit the diffuse settings were much less informative,

they still assumed an equality that aligned with the truth,
which explained the similarity in results for these two prior
settings.

7.2.2. Unequal Class Proportions, n= 150
The conditions with unequal class proportions in the popula-
tion are presented in Rows 4-6 in Figure 3 for n=150.
Given the unequal proportions at the population level, two of
the three prior conditions represented a misalignment with
respect to the class proportions. Specifically, row 4 presents
findings from diffuse priors which, although not informative,
do contain a notion of equal class sizes. Row 5 presents
results for the informative prior that assumed equal class pro-
portions, which was a stronger misalignment with the true
nature of the class structure. The last row in Figure 3
presents the informative prior with unequal class proportions,
and it is aligned with the true structure of the class propor-
tions at the population level (assuming a split of 70%/30%).
The EAIC and EBIC recovered the correct class solution
more accurately as class separation increased. Patterns
indicated that there was a preference for underextraction
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Figure 5. Selection rates for n =900.

(1-class model) when class separation levels were poor, but
the selection rate improved (favoring the 2-class solution) as
class separation increased. Between the EAIC and EBIC, the
EBIC was less sensitive to misaligned priors. The LOOIC
and WAIC performed similarly to one another in these con-
ditions of unequal class proportions. There was a higher
tendency to overextract the number of classes with mis-
aligned priors (diffuse and informative-equal settings).
Overall, the DIC was largely unaffected by class separ-
ation in these conditions, with some minor exceptions.
Overextraction for the DIC was more likely under diffuse
prior conditions, as well as the misaligned priors (i.e.,
informative with equal class proportions defined in the prior
settings). In the case of the diffuse prior settings, the priors
for the class proportions provided a weak equality assump-
tion, and this assumption was enough to produce much
higher levels of overextraction for the DIC. The DIC per-
formed best under the prior setting that aligned with the
true class structure (row 6), showing less tendency to over-
extract as compared to the misaligned priors in Rows 4 and
5. Note that although the DIC’s selection rates were

3c

improved under this prior condition, the accuracy rates
were still lower compared to the other indices examined.

7.2.3. Comparison: Equal vs. Unequal Class Proportions,
n=150

One interesting pattern that emerged in the results was
linked to the misaligned prior settings for the class propor-
tions. For the equal class proportion conditions, the mis-
aligned priors are in row 3 (informative and unequal
proportions in the priors). For the unequal class proportion
conditions, the misaligned priors are in row 4 (weak specifi-
cation of equality in class sizes, albeit diffuse prior setting)
and row 5 (informative priors with equal class proportions
specified). As a comparison, we examined Rows 3 and 5 a
bit closer since they each represented informative priors
with incorrect class proportions specified. Row 3 pretty
clearly shows that all indices were correctly aligned with the
2-class solution. Interestingly, row 5 shows, compared to
row 3, a very different pattern of results. The findings indi-
cated that incorrectly specifying equal class proportions as
being unequal via the prior did not impact the ability of the



indices to select the correct model according to the popula-
tion model. However, the impact of a misaligned prior was
considerable when the population settings specified unequal
latent classes, but the prior assumed equal classes. With the
prior essentially ignoring that there was a true minority
class and assuming equal sizes, the indices were much more
likely to overextract the number of classes (with some
instances of underextraction for the lowest class separation
condition in the left plot of row 5).

7.2.4. Sample Size Considerations

The results presented above provided nuances for the
smallest sample size of n =150, which highlight the most
variability in selection rate performance of the indices.
However, we were also interested in examining the consist-
ency of selection rate performance for each index across
moderate and large sample sizes. The following sections
detail the findings when sample sizes increased to a moder-
ate size of n =300 and to a large size of n=900.

7.2.5. When n= 300 (Moderate Sample Size)

The patterns of index performance are presented in
Figure 4. We first report the results for the equal class pro-
portion condition, followed by the unequal class proportion
condition. Within each condition, we examine whether the
overall patterns changed compared to the smallest sample
size condition (n = 150) and point out any notable differen-
ces. We also describe the results sequentially from the small-
est to the largest class separation conditions. Finally, we
report how these patterns varied across different prior
conditions.

When the true class proportion was equal (first three
rows of Figure 4) and the prior was diffuse, the overall pat-
tern resembled what was observed at n = 150. However, the
DIC performed better, with a reduced tendency to overex-
tract the number of classes. More replications favored either
a 2-class solution (in the case of the highest class separation
at 3.7 MD) or a 3-class solution (across all class separation
conditions). The EBIC did not perform well at the smallest
class separation of 2.7 MD, but once class separation
reached 3.2 MD, most replications favored the 2-class solu-
tion. The other indices (EAIC, LOOIC, and WAIC) consist-
ently supported the 2-class solution across all levels of class
separation. The results under the informative-equal prior
condition largely mirrored those observed with the diffuse
prior, with the exception that the EBIC could detect the
true number of latent classes even at the smallest class sep-
aration (MD = 2.7). This pattern was consistent with the
n =150 condition, although, as with the diffuse prior, the
DIC’s tendency to overextract was mitigated. Finally, when
the informative-unequal prior was used, all indices consist-
ently supported the 2-class solution. These results were con-
sistent with those observed at n = 150.

Next, we report the results for the case of unequal class
proportions (last three rows of Figure 4). Under the diffuse
prior, a noticeable difference when increasing the sample
size from 150 to 300 was that, even at the smallest class
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separation of 2.7 MD, most replications from all indices
except the DIC correctly favored the 2-class solution. The
DIC failed to select the 2-class solution and instead consist-
ently overextracted the number of classes, with a preference
for the 4-class solution across all class separation conditions.
As such, the poor performance of the DIC in this condition
remained the same as in n = 150, but for the other indices,
performance improved compared to n = 150. When the
informative-equal prior was used, which represents a large
mismatch between the prior and the true unequal class pro-
portion, only the EBIC tended to favor the true 2-class solu-
tion when the class separation was at least 3.2 MD. The
other indices did not perform well in selecting the true solu-
tion. The poor performance of these indices was similar to
that observed at n = 150. Under the informative-unequal
prior specification, where there was a match between the
true class proportion and prior settings, all indices except
the DIC reliably favored the 2-class solution, regardless of
class separation. The DIC did not show reliable perform-
ance, as it alternated between favoring the 2-class and the 4-
class solutions. These patterns were again comparable to
those observed in the smallest sample size condition.

7.2.6. When n =900 (Large Sample Size)

Building on the previous comparison between cells with n =
150 and n =300, we examined noticeable patterns that
emerged as sample size increased from n = 300 (Figure 4)
to n =900 (Figure 5). First, we focus on cells with equal
class proportions across both sample sizes, describing the
impact of factors such as the degree of class separation and
class proportion prior specification. Then, we move to cells
with unequal class proportions.

In cells with equal class proportions (first three rows of
Figure 5), conditions with misaligned (informative-unequal)
priors yielded the best selection rates across indices regard-
less of sample size. Conversely, when using diffuse or cor-
rectly specified (informative-unequal) priors, the DIC
tended to overestimate the number of latent classes.
Although this tendency was noticeable at n = 150 and 300,
it became more pronounced as the sample size increased.
Moving on to other indices, the impact of class separation
on the performance of the EAIC and EBIC differed across
n=2300 and n=900. At n =300, the performance
improved from a small to a moderate degree of class separ-
ation. In contrast, at n =900, both indices consistently
showed the highest selection rates for the correct class struc-
ture (i.e., 2-class), regardless of the class separation. In other
words, given a large sample size (n = 900), class separation
had nearly no impact on performance, compared to smaller
sample sizes, which performed better under—at least—a
moderate degree of class separation. Regarding the LOOIC
and WAIC, diffuse and correctly specified (informative-
equal) priors resulted in a higher rate of model over-
specification across both sample size conditions compared
to misaligned (informative-unequal) priors.

Shifting to cells with unequal class proportions (last three
rows of Figure 5), the best performance across indices
occurred in cells with informative-unequal priors—that is,
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correctly specified class proportion priors. Specifically, the
EAIC and EBIC performed best under diffuse and correctly
specified (informative-unequal) prior settings. On the con-
trary, cells with misaligned (informative-equal) priors dem-
onstrated the worst performance with a tendency to
overextract the number of latent classes across indices.
Notably, under misaligned (informative-equal) priors, the
preference of all indices for over-specified solutions became
more noticeable when moving from n =300 to n = 900.
This pattern was especially discernible for the EBIC. In the
same vein, the selection rate of the DIC, LOOIC, and
WAIC for over-specified solutions was greater under diffuse
and mismatched (informative-equal) priors relative to cor-
rect priors (informative-unequal), suggesting a higher sensi-
tivity of these indices to misaligned priors. Similar to the
equal cells, the DIC tended to consistently overextract the
number of latent classes.

Informative-unequal class proportion prior settings
yielded the best performance across all indices—regardless
of the actual class proportions (equal versus unequal)—for
both sample sizes of (n = 300) and (n = 900). The DIC per-
formed best under conditions of equal class proportions
when using informative unequal class proportion priors. In
summary, informative unequal prior settings provided the
best overall performance across indices, irrespective of sam-
ple size or empirical class proportions, but the best results
for the DIC were achieved with a combination of equal class
proportions and informative unequal priors.

8. Secondary Investigation

As the primary simulation demonstrated a pronounced
impact of class proportions on the performance of Bayesian
model selection indices, it is important to examine whether
these patterns generalize to even more extreme scenarios.
To this end, we conducted a secondary simulation study
incorporating a markedly imbalanced class structure (i.e., a
90/10 split), which reflects conditions that are plausible
(e.g., Henson et al., 2007; Tueller & Lubke, 2010). This add-
itional examination allows for a more practical evaluation of
model selection behavior under severely unequal class
proportions.

8.1. Simulation Design

We adopted the same data-generating model shown in
Figure 1, using identical population parameter values as
those listed in Table 1, except for the threshold values
required to produce the 90/10 class proportion. The second-
ary simulation manipulated one extreme unequal class pro-
portion condition (9:1 ratio), a single medium sample size
(300), three levels of class separation (MD = 2.7, 3.2, and
3.7), and four candidate class solutions (1-class, 2-class,
3-class, and 4-class models). For the 2-, 3-, and 4-class
models, three types of prior specifications were considered:
diffuse, informative-equal, and informative-unequal. For the
1-class model, only a diffuse prior was used. These
design factors yielded a total of 3 (from 1-class) + 27 (from

Table 3. Informative unequal prior specification for the 90/10 class proportion
condition in the secondary simulation.

Class solution Informative unequal

n =150
2-class D(135,15)
3-class D(135,10,5)
4-class D(135,5,5,5)

n =300
2-class 'D(270,30)
3-class 'D(270,20,10)
4-class 'D(270,10,10,10)

n =900
2-class D(810,90)
3-class 'D(810,60, 30)
4-class D(810, 30, 30,30)

Note. The true number of classes was two, with 9:1 class proportions for
extremely unequal conditions.

2-4-class) = 30 unique simulation conditions. The hyper-
parameter settings for the diffuse and informative-equal
prior specifications were the same as those shown in Table
2, whereas the settings for the informative-unequal priors
are summarized in Table 3. Each condition was replicated
100 times. While the number of replications was smaller
than that in the primary simulation study, it was deemed
sufficient for the purpose of evaluating whether patterns
observed in the primary results generalize to more extreme
conditions.

Data generation and Bayesian model estimation were
conducted in Mplus Version 8.7 (L. K. Muthén & Muthén,
1998-2017). To avoid between-chain label switching, models
were estimated using a single Markov chain with 40,000
iterations, with the first 20,000 discarded as burn-in. To pre-
vent within-chain label switching, parameter identifiability
constraints were imposed such that the intercept for Class 1
was constrained to be greater than that of Class 2 for mod-
els with two or more classes. To address potential issues
with parameter estimates becoming trapped in local max-
ima, we supplied the same starting values for all class solu-
tions as those used in the primary simulation study.

8.2. Simulation Results

8.2.1. Convergence Rates

Figure 6 presents convergence rates across class solutions
for the secondary simulation with extremely unequal class
proportions (90/10 split). Each replication was considered to
have converged if the highest potential scale reduction factor
across all parameters was less than 1.05. Overall, conver-
gence was high for the 1-class solution under all prior speci-
fications, but rates dropped considerably as the number of
classes increased. For the 2-class models, convergence was
somewhat stable with diffuse and informative-unequal pri-
ors, but markedly lower for the informative-equal priors,
particularly at higher levels of class separation. For 3- and
4-class models, convergence rates declined sharply across all
priors, with the lowest rates observed for the informative-
equal specification. In contrast, the informative-unequal
priors consistently yielded the most favorable convergence
patterns, maintaining moderate rates even under the more
complex class solutions.
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Figure 6. Convergence results for the secondary simulation.

These patterns suggest that the severe class imbalance
created additional challenges for model estimation, espe-
cially when priors did not align with the underlying unequal
class structure. However, the informative-unequal priors
provided some protection against convergence failures rela-
tive to the diffuse and informative-equal priors.

8.2.2. Selection Rates

Figure 7 summarizes model selection rates under the
extreme 90/10 class imbalance across levels of class separ-
ation and prior specifications. For the diffuse priors (top
row), the information criteria were inconsistent, with selec-
tion spread across the 2-, 3-, and 4-class models. The EAIC
and EBIC consistently selected the true 2-class model, and
the LOOIC and WAIC experienced improvements as class
separation increased (with the poorest separation condition
tending to align with over-extraction for these indices). The
DIC struggled under these conditions and had a strong ten-
dency to over-extract.

For informative-equal priors (middle row), the true
model solution is the least selected by all indices. The incor-
rect prior settings for the class proportions appear to
strongly interact with the ability for indices to properly
define the class structure.

Finally, for the informative-unequal prior settings (bot-
tom row), we see very clear patterns of proper selection
rates for all indices. The DIC still shows a slight tendency of
over-extraction (especially clear for MD = 3.7), but the pat-
tern of results is quite clear.

Overall, these findings highlight that class proportion pri-
ors play a critical role under severe imbalance: Informative-
unequal priors consistently identified the true model,
whereas diffuse and informative-equal priors led to unstable
and often incorrect solutions.

9. Discussion

Several consistent patterns emerged across our findings. As
anticipated, index performance improved substantially with
increasing sample size, yielding clearer and more interpret-
able results in larger sample conditions (a pattern that aligns
with statistical theory regarding power and precision).

The LOOIC and WAIC demonstrated superior perform-
ance in detecting class structure inconsistencies across most
conditions. However, these indices struggled when faced
with the specific challenge of unequal empirical class pro-
portions paired with priors specifying equal class distribu-
tions. This misalignment between population characteristics
and prior specifications proved particularly problematic for
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Figure 7. Selection results for the secondary simulation.

both the LOOIC and WAIC. Moreover, the impact of prior
misalignment varied depending on whether the data con-
tained a minority class or featured relatively equal class
sizes. These findings highlight the critical importance of
considering relative class proportions when selecting indices
for determining appropriate class structure.

The EAIC emerged as a consistently reliable index across
conditions, accurately detecting class structure inconsisten-
cies in most modeling scenarios. In contrast, the EBIC dem-
onstrated limitations in identifying correct class solutions,
particularly when class separation was poor and sample size
was small. Nevertheless, the EBIC performed adequately
under conditions with more pronounced class separation,
even when priors were misaligned in small and medium
sample sizes. These patterns suggest that EBIC may still
offer practical utility in specific contexts. This differential
performance across separation conditions underscores the
importance of considering multiple indices when making
determinations about latent class structure, especially in
datasets where class distinction may be ambiguous.

A particularly significant finding from our investigation
concerns the performance of the DIC. Critically, this finding
builds on earlier concerns about the shortcomings of the
DIC (Spiegelhalter et al., 2014), providing new evidence of
its limited robustness in the context of Bayesian mixture
modeling. Our results demonstrate that the DIC exhibits a
consistent tendency toward overextraction of latent classes.
This overextraction rate increases with larger sample sizes
under specific prior conditions, revealing an important
three-way interaction effect between prior specifications,
sample size, and index performance that researchers must
consider to avoid latent class overextraction. Such overex-
traction can substantially alter substantive research conclu-
sions by artificially splitting classes or incorrectly assigning

3c
Class Solution

subjects to latent groups. Interestingly, there was one area
where the DIC showed a clean solution in Figure 3. When
the prior setting was misaligned in that it showed unequal
class sizes but the true latent classes were equal in size, the
DIC did not tend to overextract (row 3 of Figure 3). In this
condition, the hyperparameter setting of the prior distribu-
tion down-weighted the possibility for overextraction.
Specifically, high hyperparameter values in the Dirichlet
prior exert a stronger influence, drawing more posterior
mass toward the class with larger prior weights. These find-
ings underscore the importance for applied researchers to
exercise caution when interpreting DIC results and to
potentially consider complementary indices when determin-
ing class enumeration in Bayesian mixture models.

To address concerns about “false” over-extraction (e.g.,
spurious classes of only 1-2%), we examined the estimated
proportions of over-extracted classes in both the primary and
secondary simulations. As summarized in Figure 8, the add-
itional classes almost never appeared at such trivial sizes. In
the 3-class models, over-extracted classes under diffuse priors
were occasionally as small as ~10%, but more often were
larger. Under informative-equal priors, spurious classes typic-
ally accounted for 20-40% of the sample. In the 4-class mod-
els, the fourth class was sometimes near 10% under diffuse
priors but rarely below that level. Thus, the over-extracted
classes we observed generally represented non-trivial propor-
tions of the sample and were not easily dismissible as nuis-
ance classes. Importantly, parameter estimates for these classes
sometimes resembled existing classes but at other times dif-
fered, underscoring the need for researchers to incorporate
substantive interpretability alongside fit indices when evaluat-
ing class solutions (see e.g., Nylund-Gibson & Choi, 2018).

Overall, the simulation findings from the primary and sec-
ondary investigations demonstrated that prior misalignment
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did not simply reduce efficiency but can fundamentally dis-
tort the operating characteristics of the information criteria,
making them appear unstable or misleading. For applied
researchers, this implies that careful attention to prior specifi-
cation is critical, particularly in settings where class imbalance
is expected. In practice, incorporating prior knowledge
about plausible class proportions (e.g., informed by theory
or previous data) can substantially improve the reliability
of information-criterion-based model selection decisions,
whereas reliance on default or misaligned priors may lead to
systematic misclassification of model complexity.

9.1. Future Research Directions to Consider

Class enumeration remains a critical methodological consid-
eration for future investigations due to its profound impact
on substantive interpretations and findings. An incorrect
class solution inevitably leads researchers to draw conclu-
sions and make generalizations that inadequately reflect the
population(s) under study. While model selection tools can
facilitate the selection of an appropriate class solution, our
investigation (though revealing important performance pat-
terns across indices) highlights the need for further research
before we fully understand class enumeration and model
selection within the Bayesian mixture modeling framework.
One promising direction for methodological advance-
ment involves developing corrections or modifications to
indices that demonstrated limitations in detecting the cor-
rect class solution. A potentially valuable approach would be
adapting the complexity index in the DIC (specifically the
pp parameter) to address the overextraction issues.

Similarly, the EBIC, which proved particularly unreliable
when class separation was poor, warrants reexamination. Its
current formulation appears insufficiently sensitive to proper
class structure, indicating a clear area for improvement.

Another valuable extension of this work would be com-
paring these indices’ performance against alternative
Bayesian modeling strategies. Specifically, semi- and non-
parametric approaches for mixture models utilizing revers-
ible jump Markov chain Monte Carlo or Dirichlet process
algorithms have shown promising utility for latent mixture
models (Ho & Hu, 2008; Ishwaran, 2000; Qiu et al., 2025;
X.-Y. Song et al, 2011; X. Song et al, 2018; Yang &
Dunson, 2010). However, these approaches tend to favor
underextraction (X. Song et al, 2018). A comprehensive
comparison would provide valuable insights regarding opti-
mal analytical strategies: whether to employ model selection
indices or estimate latent class numbers directly using speci-
alized class estimation algorithms.

An additional area in need of future research is a more
in depth investigation on how settings for the prior distribu-
tions for all model parameters (not just the class propor-
tions) impact of the performance of the information criteria.
Some previous work (see e.g., Depaoli, 2013; Lee & Harring,
2023) has indicated that priors placed elsewhere in the
model (e.g., on growth parameter means, variances, or cova-
riances) can impact parameter recovery. It follows that prior
sensitivity analysis for these other model parameters may
uncover performance patterns for the information criteria
that impacts our understanding of model selection. We rec-
ommend that researchers examine this issue through a sys-
tematic sensitivity analysis of different prior forms and
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hyperparameter settings on all model parameters. That work
would create a more complete picture of index performance
and the interaction between prior distributions and class
enumeration.

A limitation of our current investigation is its exclusive
focus on linear LGMMs. Future research should examine
whether index performance patterns generalize across other
SEM-based mixture models, including mixture SEM, latent
class analysis models, nonlinear growth mixture models, and
mixture confirmatory factor analysis (e.g., Heo et al., 2024;
Tueller & Lubke, 2010; Whittaker & Miller, 2021; Yung,
1997). Additionally, our study did not address index per-
formance in the presence of missing data, a significant
omission given that research suggests indices can be sub-
stantially affected by missingness (see, e.g., Heo et al., 2024;
Winter & Depaoli, 2022). This issue deserves thorough
exploration in future work to develop a comprehensive
understanding of these indices’ performance in applied
research contexts, where missing data represent the norm
rather than the exception.
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