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Detecting Model Misspecification in Bayesian Piecewise Growth Models

Sarah Depaoli , Fan Jia and Ihnwhi Heo

University of California

ABSTRACT
Bayesian estimation has become increasingly more popular with piecewise growth models because it
can aid in accurately modeling nonlinear change over time. Recently, new Bayesian approximate fit
indices (BRMSEA, BCFI, and BTLI) have been introduced as tools for detecting model (mis)fit. We com-
pare these indices to the posterior predictive p-value (PPP), and also examine the Bayesian information
criterion (BIC) and the deviance information criterion (DIC), to identify optimal methods for detecting
model misspecification in piecewise growth models. Findings indicated that the Bayesian approximate
fit indices are not as reliable as the PPP for detecting misspecification. However, these indices appear
to be viable model selection tools rather than measures of fit. We conclude with recommendations
regarding when researchers should be using each of the indices in practice.

KEYWORDS
Bayesian fit indices; model
fit; model misspecification;
model selection; piecewise
growth models

Latent growth models (LGMs) represent a group of models
that capture linear and nonlinear change over time. These
models have gained in popularity as tools used to study
developmental processes that are dynamic over time (see,
e.g., Grimm et al., 2016). Many longitudinal processes are
nonlinear by nature, thus giving rise to increased demand in
models that can estimate dynamic change. The piecewise
LGM is one example that can handle nonlinear growth
through modeling distinct growth phases, which are joined
together by knots. Piecewise LGMs are commonly imple-
mented in longitudinal studies that examine nonlinear proc-
esses over time (see, e.g., Chung et al., 2017; Lee &
Rojewski, 2009; Jaggars & Xu, 2016; Patrick &
Schulenberg, 2011).

One pitfall of LGMs emerging from the methodological
literature is that nonlinear trends can be difficult to properly
estimate (Diallo et al., 2014), and inaccurate estimates of the
growth patterns can be obtained. However, the use of
Bayesian methods for estimation has proven to be an advan-
tageous approach over the conventional frequentist frame-
work (Depaoli, 2013; Smid, McNeish, et al., 2020). The
Bayesian approach combines information via a prior distri-
bution with the sample data to form a resulting posterior
distribution. For example, using a simple linear growth
model, information can be derived from previous research
to form priors for the latent intercept mean and the latent
linear slope mean. The information captured through the
prior distribution is a key ingredient that can help improve
the accuracy of the final model estimates produced, thus
improving the utility of LGMs when used in substantive set-
tings. Typically, the parameters of most interest are the
means and variances for the latent growth factors (e.g., the
latent intercept and slope terms), as well as the latent factor

covariance matrix. Overall, these latent factors are important
to accurately estimate because they produce the growth tra-
jectory representing the estimated growth or change patterns
over time.

Incorporating prior information can help to improve the
accuracy of LGM estimates, even when samples are rela-
tively smaller in size (McNeish, 2016) and when growth is
nonlinear in nature (Depaoli & Boyajian, 2014; Kohli &
Harring, 2013; Winter & Depaoli, 2022). Given that rela-
tively smaller samples and nonlinearity are two common
issues within longitudinal research implementing LGMs, it
is important to fully explore the performance of Bayesian
methods for these models and highlight the potential value
of Bayesian estimation over traditional frequent-
ist approaches.

One element within the Bayesian implementation of
LGMs that needs further examination is the use of model fit
and comparison indices. Within LGM research, it is com-
mon for researchers to use model fit or comparison meas-
ures to assess multiple competing models to select the one
that “best” represents the patterns captured by the data
(Chou et al., 1998; Kroese et al., 2013; Li et al., 2019; Wu
et al., 2009). Until recently, the model selection and fit
index choices within the Bayesian framework were quite
limited, largely focusing on the posterior predictive p-value
(PPP-value; Gelman et al., 1996). However, there has been a
new expansion of Bayesian model fit tools available with the
extension of conventional approximate model fit indices
into the Bayesian framework (Asparouhov & Muth�en, 2021;
Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018).

Thus far, methodological research has indicated that
these indices have great potential to aid in the detection of
model misspecification for structural equation models

� 2022 Taylor & Francis Group, LLC

CONTACT Sarah Depaoli sdepaoli@ucmerced.edu Psychological Sciences, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343, USA.
Supplemental data for this article is available online at https://doi.org/10.1080/10705511.2022.2144865.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL
2023, VOL. 30, NO. 4, 574–591
https://doi.org/10.1080/10705511.2022.2144865

http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2022.2144865&domain=pdf&date_stamp=2023-06-02
http://orcid.org/0000-0002-1277-0462
http://orcid.org/0000-0003-3855-532X
http://orcid.org/0000-0002-6123-3639
http://www.tandfonline.com


(Asparouhov & Muth�en, 2021; Garnier-Villarreal &
Jorgensen, 2020; Hoofs et al., 2018). However, the literature
is sparse regarding their performance for LGMs. To our
knowledge, one paper has examined the performance of
these indices in the context of LGMs. Specifically, Winter
and Depaoli (2022) found (for a quadratic model) that pri-
ors that diverged from the population values impacted the
performance of Bayesian model fit and selection tools such
that correctly specified LGMs appeared misspecified. This
was an important finding in that it highlighted the influence
that priors can have on the performance of these approxi-
mate fit indices. However, there is a complete lack of meth-
odological work examining the performance of these indices
in the context of piecewise LGMs. Our goal is to extend the
work conducted on LGMs to explore the ability of these
indices to detect model misspecification in piecewise trajec-
tories and the impact of priors. This goal is rooted in not-
able gaps existing in the methodological literature.
Specifically, it has been established that prior specifications
have an important role in properly detecting and capturing
degrees of nonlinearity (e.g., Lock et al., 2018). Prior specifi-
cation can also influence the performance of Bayesian model
fit measures in various longitudinal models (Cain & Zhang,
2019; Winter & Depaoli, 2022). Therefore, it is interesting
to examine the potential impact of priors and the ability of
these Bayesian fit measures to detect model misspecification
in the presence of piecewise trajectories.

1. Goals and Organization of the Current
Investigation

The current study examines these issues in the context of
the piecewise LGM, which can be used to capture nonlinear-
ity over time. Specifically, we present a simulation study
that examines the overall performance of the Bayesian
model fit measures in terms of model (mis)specification and
prior specification. Our goal is to uncover performance and
provide recommendations for applied researchers who are
looking to use the Bayesian framework to assess nonlinear
growth via piecewise models, which is likely to involve
assessing model fit. We will compare the performance of
the PPP-value to the new Bayesian approximate fit indices,
as well as two common model comparison indices: the
Bayesian information criterion (BIC; Schwarz, 1978) and the
deviance information criterion (DIC; Spiegelhalter et al.,
2002). This investigation is essential to uncover the accuracy
and ability for these indices to properly detect model mis-
specification for piecewise LGMs. This study will help to
answer the following two questions regarding model and
prior specification:

1. (Model Misspecification) How well do Bayesian model
fit and asssessment measures detect model misspecifica-
tion for piecewise LGMs?

2. (Prior Specification) Does prior specification (e.g.,
informativeness and accuracy of the prior) have an
impact on the overall performance of model fit indices
for piecewise LGMs?

A variety of conditions are examined here to fully expose
specification issues tied to the model and the priors. The cur-
rent paper is organized as follows. First, we present the basic
form of the LGM and then extend this to the piecewise
LGM. We discuss issues tied to knot placement and the gen-
eral state of knowledge surrounding nonlinear modeling. This
is followed by details surrounding the Bayesian implementa-
tion of the piecewise LGM, including a presentation of the
model fit and comparison indices explored here. We then
include a discussion on the performance of model fit and
comparison indices in the LGM literature. Next, we present
the simulation design, which is followed by a presentation of
the results. The paper concludes with a discussion of when
Bayesian fit and model comparison indices can (and cannot)
be trusted to detect model misspecifications. We present rec-
ommendations of use for applied researchers, as well as
future methodological directions that are needed to improve
the assessment of fit for Bayesian (piecewise) LGMs.

2. Latent Growth Models: Basics and the
Piecewise Extension

LGMs estimate overall growth trajectories through repeated
measures of a group of individuals, and simultaneously
allow for individual variability in the trajectories. In these
models, group growth trajectories are captured by the means
of growth factors (i.e., latent intercept and latent slope),
while the individual variabilities are measured by the varian-
ces of these growth factors. Repeated measures are treated
as multiple indicators of the latent factors. The factor load-
ings vary depending on the shapes of trajectories. An LGM
can be represented in matrix notation:

yi ¼ Kgi þ ei (1)

where yi is a vector of T repeated measures for individual i,
gi is a vector of m latent factors for individual i, K is a
T�m matrix of the factor loadings, and ei is a vector of T
residuals that cannot be explained by the trajectory. For
example, in a simple linear latent growth curve model, two
latent factors (m¼ 2) represent a latent intercept (g0i) and a
latent linear slope (g1i) for individual i. In this case,
Equation 1 can be rewritten as follows:

y1i
y2i
..
.

yTi

2
6664

3
7775 ¼

1 k1
1 k2
..
. ..

.

1 kT

2
6664

3
7775 g0i

g1i

� �
þ

e1i
e2i
..
.

eTi

2
6664

3
7775: (2)

Equation 2 also has an expanded form that represents yti,
the observed variable for individual i at time t, as a function
of two latent factors (g0i and g1i) and the residual eti:

yti ¼ g0i þ g1ikt þ eti: (3)

The factor loadings for the latent intercept are all fixed at
1 because the intercept does not change over time; the load-
ings associated with the linear slope are usually fixed to a
linear progression of time scores that associates with the
repeated measures (kt, t ¼ 1, 2, . . . ,T). The linear slope
loading for the first occasion is typically set at 0, therefore,
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we can have kt ¼ ð0, 1, 2, 3, 4Þ0, for five equally spaced meas-
urement occasions (T¼ 5). If the time score is centered
at the midpoint, then kt¼ð�1,�2, 0, 1, 2Þ0 (Grimm
et al., 2016).

Linear LGMs can be extended to estimate nonlinear tra-
jectories that include multiple growth phases. For example,
learning process often demonstrates a rapid growth in the
beginning and then a slower growth in the later phase; and
the shape of the growth trajectory may change due to an
intervention (Kohli et al., 2015). Piecewise LGMs allow
researchers to model change processes with distinct phases
(Kohli & Harring, 2013). In a piecewise LGM, two adjacent
growth phases are separated by a change point or knot,
which can be known (fixed) or freely estimated.
Considering a two-phase linear-liner piecewise process, the
two phases of growth are captured by two linear slope
growth factors. Suppose the knot is known to be at the kth

occasion, then we can adjust Equation 3 to represent the
piecewise growth model:

yti ¼ g0i þ g1i �minðkt , kkÞ þ g2i �maxðkt�kk, 0Þ þ eti,

(4)

Where g0i, g1i, and g2i are latent intercept, and the first
and second latent linear slopes, respectively; kt is the time
score associated with the occasion t (t¼ 1, 2,… ,T), and kk
is the time score associated with the knot at the kth occa-
sion. For occasions where kt � kk, the first and second
latent slopes have loadings of kt and 0, respectively; for kt >
kk, their loadings becomes kk and (kt - kk). For example,
when there are seven measurement occasions and the knot
is at the 4th occasion, then k¼ 4, kk ¼ 3, and the K matrix
is written as follows:

K ¼

1 0 0
1 1 0
1 2 0
1 3 0
1 3 1
1 3 2
1 3 3

2
666666664

3
777777775
: (5)

An example of a path diagram of the piecewise LGM is
pictured in Figure 1 and is the focus of the current investi-
gation. In addition, we have included examples for what
piecewise growth trajectories look like in Figure 2; this
figure will be further explained in the Simulation
Design section.

The piecewise LGM can also accommodate a variation of
more complex growth scenarios. One example is the piece-
wise LGMs with disjointed knots (Cudeck & Codd, 2012;
Rioux et al., 2021). In addition, Harring et al. (2021) dis-
cussed three variants of piecewise LGMs with both fixed
and freely-estimated knot(s), including the three-phase lin-
ear model, segmented polynomial model, and piecewise
model with exponential functions. These advanced piecewise
LGMs are beyond the scope of the current investigation, but
we mention them to provide the context of how versatile
the piecewise LGM can be.

2.1. Model Misspecification and the Piecewise LGM

Relevant to the current investigation is the (mis)specification
of the piecewise LGM. As with any latent variable model,
assessing model fit and the ability to properly detect specifi-
cation errors is a key component to proper specification and
model interpretation. There are many ways in which the
piecewise LGM can be misspecified. Perhaps one of the
most obvious specification errors is if the nonlinearity of
the trajectory was misspecified to be linear by ignoring the
presence of the knot. In this instance, the piecewise model
would be misspecified to a linear LGM. Related to this situ-
ation, Leite & Stapleton (2011) studied growth trajectory
misspecification, in part, by fitting a linear growth model
(analysis model) to data generated from a piecewise model
(population model). They noted that misspecifying the
growth trajectory in this way (e.g., by misspecifying a non-
linear trajectory to be linear) is akin to simultaneously mis-
specifying the mean and covariance structure of the model.
The consequences are that incorrect trajectory estimates can
be obtained, potentially leading toward substantively differ-
ent conclusions than what exist in the population.

Another form of misspecification in piecewise LGMs is
to incorrectly specify the knot location in the trajectory. The
model itself would still produce a piecewise trajectory, but it
would be incorrect in its precise nonlinear formation. In
practice, the exact location of the knot may be unknown.
For example, if an intervention is administered at time-
point 4, that may not be the turning point in the trajectory
because there could be a delayed reaction to the interven-
tion (in this case, perhaps time-point 5 would be the turn-
ing point where the knot should be placed). Ning & Luo
(2017) discussed this issue, indicating that misspecifying the
knot location may lead to incorrect conclusions surrounding
the growth rates.

The current investigation extends these concepts of
model misspecification into the Bayesian framework, assess-
ing the influence that priors may have in this modeling pro-
cess. In addition, we examine the ability of Bayesian indices
to detect this type of misfit, which may have important sub-
stantive consequences.

2.2. Relevant Prior Distributions

For the Bayesian implementation of the piecewise LGM,
there are several priors that are of importance. First, latent
growth parameters (g0, g1, and g2) have estimated means
that are assumed to be distributed normally as Nðl,r2Þ,
where l represents the mean hyperparameter and r2 repre-
sents the variance hyperparameter. These hyperparameters
control the location and level of informativeness (or preci-
sion), respectively. The latent growth parameters are typic-
ally allowed to covary, and the prior for this latent factor
covariance matrix (with growth factor variances on the diag-
onal and covariances on the off-diagonal) can be defined
through the inverse Wishart distribution as IWðW, mÞ: The
W hyperparameter is a positive definite matrix, which can
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be defined in a variety of ways, including as an identity
matrix. The � hyperparameter represents the degrees of
freedom, and the specification of W and � control the level
of informativeness of this prior for the latent factor covari-
ance matrix. The last prior that is typically specified for this
model is for the variances in the model, which include the
error variances that are tied to the repeated measures data.

This prior can be specified in a variety of ways, but the con-
ventional distributional form for a variance is to use an
inverse gamma prior such as IGða, bÞ: In this case, the
hyperparameters a and b are shape and scale parameters for
the inverse gamma distribution, respectively. As detailed in
the Design section below, the only prior that is manipulated
in the current investigation is the prior placed on the

η0i η1i η2i

1

2.5 0.5 0.75

0.005 0.035

y1i y2i y3i y4i y5i y6i y7i

1 1 1 1 1 1 11 2 3 3 3 31 2 3

ε1i ε2i ε3i ε4i ε5i ε6i ε7i

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0.2 0.1 0.1

Figure 1. Piecewise growth curve model for the largest slope change condition.
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Figure 2. Three conditions of growth trajectories.
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growth factor means. The other priors were left as default
settings implemented in the Mplus software (Muth�en &
Muth�en, 1998–2017).1

3. Model Fit and Selection Indices

3.1. Information Criteria

Although there are many information criteria to choose
from, our investigation will examine two in detail: the BIC
and the DIC. These two criteria are commonly implemented
within the Bayesian SEM context for model selection pur-
poses. Nested or non-nested models can be compared with
each of these indices.

The BIC is based on an approximate of the Bayes factor
and is written as follows:

BIC ¼ ð�2Þ log ð~hjyÞ þ q log n, (6)

where the number of model parameters (represented by h)
is q, the sample size is n, and ~h is an estimate of h depend-
ing on y.

The second index we will cover here is the DIC, which
includes the effective number of parameters (which is often
lower than the actual number of model parameters) when
determining model complexity, as specified by the user
(Spiegelhalter et al., 2002); the authors termed this as choos-
ing the “focus.” In a Bayesian analysis, the number of
parameters counted comprising the idea of model complex-
ity can increase rapidly as more and more hyperparameters
(or hyperpriors placed on hyperparameters) are included in
the model; each model prior is comprised of hyperpara-
meters, adding to the number of parameters in the model.
The DIC allows the researcher to remove hyperparameters
from the count, which removes them from the measure of
model complexity, and makes the DIC a better index for
handling a larger number of hyperparameters.

Before defining the DIC, we must first define the devi-
ance, seen as:

DðhÞ ¼ �2 log ðf ðyjhÞÞ þ 2 log ðhðyÞÞ, (7)

where hðyÞ is a standardized term which is a function of the
data y. Next, the effective number of parameters, pD, is writ-
ten as follows:

pD ¼ DðhÞ�Dð~hÞ, (8)

where ~h is an estimate of h depending on data y, and DðhÞ
is the posterior mean of the deviance, which can be defined
as follows:

DðhÞ ¼ Eh �2 log ðf ðyjhÞjyÞ� �þ 2 log ðhðyÞÞ: (9)

These measures form the DIC for model comparison as
follows:

DIC ¼ DðhÞ þ pD
¼ Dð~hÞ þ 2pD
¼ 2DðhÞ�Dð~hÞ:

(10)

As long as DðhÞ can be computed in closed form (e.g.,
there are no missing data present, which is the assumption
we use here), then DðhÞ can be approximated using Markov
chain Monte Carlo (MCMC) and taking the mean of the
simulated values of DðhÞ:2

3.2. Posterior Predictive p-Value (PPP-Value)

The posterior predictive model check (PPMC) process is a
popular procedure used to assess model fit within the
Bayesian estimation framework. Before delving into the
technical details, we will provide a brief conceptual overview
of the three steps used in the PPMC process. First, an
observed data posterior distribution is used to derive param-
eter estimates (e.g., based on the mean of the posterior).
Second, each MCMC iteration (i.e., each sample in the
Markov chain) generates a replicated dataset the same size
as the observed dataset. Finally, a discrepancy function is
computed between the observed and replicated data. A ref-
erence distribution is used to evaluate the extremeness of
the observed data test statistic. Model misspecification is
identified through a low PPP-value, indicating notable dis-
crepancy between the observed and replicated data.

As noted above, the PPMC process allows a researcher to
examine how consistent the observed data are with the pro-
posed model. Specifically, it assesses whether expected data
from the model are consistent with the observed sample
data (Stern & Cressie, 2000). For a well-fitting model, the
discrepancy between the fit of the model to the observed
data and to the replicated data should be minor. However,
as model misfit increases in severity, this discrepancy will
also increase.

Examining this discrepancy first starts with taking draws
from the posterior predictive distribution tied to the repli-
cated data yrep, and this can be written as follows:

pðyrepjyÞ ¼
ð
pðyrepjhÞpðhjyÞdh, (11)

1For the interested reader, there are additional methods for specifying prior
distributions on the parameters included in this investigation. For example,
separation strategy priors can be used for the latent factor covariance matrix
(Depaoli, 2021; Liu et al., 2016), and there are a variety of prior settings that
can be used for variance parameters (Gelman, 2006). To keep the simulation
conditions manageable, and focus on the priors most commonly modified in
applied research, we opted to only examine different settings for the latent
growth factor means.

2It is important to note that sometimes the DIC is considered to only be
partially Bayesian because it does not use the entire posterior. Rather, the DIC
uses the mean of the simulated values from DðhÞ: As a result, many other
indices have been developed within the Bayesian estimation framework.
However, we restrict our investigation to these indices because they are
currently the most widely used. For more information on the shortcomings of
the DIC, see Spiegelhalter et al. (2014). In addition, the DIC is computed
differently in popular Bayesian software packages (Merkle et al., 2019). For
example, Mplus and the R blavaan package compute the marginal DIC, in
which the likelihood component is integrated over the latent variables. Other
software packages, such as BUGS and JAGS, use the conditional DIC, in which
the likelihood is conditional on the latent variables. The magnitude of the
two types of DICs varies across models and may not favor the same one. In
the current study, we focus on the marginal DIC, as it has been implemented
in Mplus and has been recommended in hierarchical Bayesian models for its
ability to evaluate a model’s generalizability beyond the observed individuals
(Merkle et al., 2019).
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where y is the observed data, and h is a vector of model
parameters. We note that pðhjyÞ is the posterior, which is
multiplied by the probability of the replicated data given the
model parameters (pðyrepjhÞ). This equation can be
expanded to

pðyrepjyÞ ¼
ð
pðyrepjhÞpðyjhÞpðhÞdh, (12)

where the posterior is replaced by the product of the likeli-
hood (pðyjhÞ) and the prior (pðhÞ).

MCMC is used to draw from the posterior predictive distri-
bution, and a replicated dataset is obtained from each draw of
h using pðyrepjhÞ: Next, a discrepancy function is used to
make a comparison between the observed and replicated data.
This discrepancy function tests a model M0 against an unre-
stricted mean and covariance matrix model, M1 (Muth�en,
2010). There are many forms that the discrepancy function
can take on (Gelman et al., 1996), but the classic likelihood
ratio test (LRT) is commonly implemented as follows, such as
in Mplus (Asparouhov & Muth�en, 2010a):

FML ¼ D

¼ n
2
ð log jRj þ TrðR�1ðCV þ ðl� �xÞðl� �xÞÞÞ

� log jCVj � qÞ, (13)

where n is the sample size, R is the model implied covariance
matrix, CV is the sample covariance matrix, l is the model
implied mean, �x is the sample mean, and q is the number of
observed variables in the model (Asparouhov & Muth�en,
2021; Scheines et al., 1999). Estimates for ls and Rs are com-
puted based on the M0 model parameter estimates at each s
iteration in the chain. Next, the discrepancy function based
on observed data is computed as Dobs

s ¼ Dð�x,CV,ls,RsÞ:
The next step deals with the replicated data. A replicated

dataset is generated at each iteration of the Markov chain
for the M0 model. A discrepancy function is formed for the
replicated data as Drep

s ¼ Dð�xs,CVs, ls,RsÞ, which is based
on the sample mean (�xs) and covariance matrix (CVs) for
the replicated data. Next, a reference distribution Preference is
derived from the joint distribution of yrep and h as follows:

Preferenceðyrep, hÞ ¼ pðyrepjhÞpðhjyÞ: (14)

The reference distribution Preference is then used to evalu-
ate the discrepancy Dðy, hÞ using a tail probability akin to
the classic p-value (Congdon, 2007; Scheines, Hoijtink, &
Boomsma, 1999). This tail probability is called a posterior
predictive p-value (PPP-value):

PPP-valueðyÞ ¼ Preference Dðyrep, hÞ>Dðy, hÞjy� �
, (15)

which can also be written as follows:

PPP-value ¼ pðDrep>DobsÞ� 1
S

XS
s¼1

ds, (16)

where S is the number of iterations in the Markov chain,
and ds ¼ 1 if Drep

s >Dobs
s and 0 otherwise (Asparouhov &

Muth�en, 2021). This process involves computing Dðyreps , hsÞ
and Dðy, hsÞ, and next the proportion of s samples where
Dðyreps , hsÞ exceeds Dðy, hsÞ is computed (Congdon, 2007).

Extreme low PPP-values can indicate that there may be
model misspecification (Asparouhov & Muth�en, 2010b; Cain
& Zhang, 2019). We note that it is not recommended to use
a standard frequentist p-value cutoff (e.g., 0.05) when inter-
preting the PPP-value because PPP-value tends to be con-
servative (see, e.g., Robins et al., 2000) and not reflected
well by the standard frequentist cutoff. However, this is still
a common cutoff that is implemented, so we consider impli-
cations of using it in our investigation.

3.3. Bayesian Approximate Fit Indices

It has become standard reporting to include approximate fit
indices within frequentist structural equation modeling. One
benefit to these approximate fit measures is that they can
help to identify models that fit the data in an approximate
(but substantively accurate) sense. We highlight three
approximate fit indices that have recently been adopted into
the Bayesian framework: the root mean square error of
approximation (RMSEA; Steiger & Lind, 1980; Steiger,
1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973),
and the comparative fit index (CFI; Bentler, 1990).

3.3.1. Bayesian Root Mean Square Error of Approximation
(BRMSEA)
The RMSEA is an absolute index used to assess “badness-of-
fit,” and it can be converted for use within Bayesian statistics.
Specifically, the BRMSEA is computed at each iteration of the
Markov chain as follows:

BRMSEAs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0,

Dobs
s �p�

ðp� � pDÞn

" #vuut , (17)

where Dobs is the observed data discrepancy function, s is a
given iteration in the Markov chain, n is the sample size, p�

is the number of parameters in the target model, and pD is
typically close to the number of parameters in the M0 model
when no informative priors are specified (Garnier-Villarreal
& Jorgensen, 2020). The BRMSEA captures model misfit
through the rescaled discrepancy at iteration s. A v2-based
distribution of realized values can be constructed based on
BRMSEA (Garnier-Villarreal & Jorgensen, 2020), which ties
this index to the PPMC procedure described above.

3.3.2. Bayesian Tucker-Lewis Index (BTLI)
The BTLI (Asparouhov & Muth�en, 2021; Depaoli, 2021;
Garnier-Villarreal & Jorgensen, 2020) is based on the devi-
ance, which we assume is evaluated at the posterior mean
here (but it can take on alternative forms). The BTLI can be
written as follows:

BTLIs ¼
ðDobs

b, s�pDbÞ=ðp��pDbÞ�ðDobs
t, s�pDtÞ=ðp��pDtÞ

ðDobs
b, s � pDbÞ=ðp� � pDbÞ � 1

,

(18)

where Dobs is the observed data discrepancy function, b is
the baseline model with no covariance structure, t is the
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target model, p� is the number of parameters in the model,
and s is a given iteration in the Markov chain.

3.3.3. Bayesian Comparative Fit Index (BCFI)
The BCFI (Asparouhov & Muth�en, 2021; Depaoli, 2021;
Garnier-Villarreal & Jorgensen, 2020) can take on different
versions, but we present a version where the Markov chain
is rescaled using pD, indicating that the expectation is equal
to the deviance evaluated at the posterior mean. The index
can be written as follows:

BCFIs ¼ 1� Dobs
t, s�p�

Dobs
b, s � p�

, (19)

where Dobs is the observed data discrepancy function, b
denotes the baseline model with no covariance structure, t
denotes the target model, s is a given iteration in the
Markov chain, and p� is the number of parameters in the
target model.

3.4. Performance of Model Fit and Selection Indices

We just covered several indices that can be used to detect
model misspecification for Bayesian modeling. The perform-
ance of these indices in the literature are highlighted
as follows.

In LGMs, a typical example is fitting a linear model even
though the true trajectory in the population is quadratic or
piecewise. Research has been done in the frequentist frame-
work to examine how sensitive the fit indices are to this
type of misspecification. Yu (2002) simulated data from two
quadratic models with either five or eight measurement
occasions, and varied sample sizes from 100 to 1000. The
analysis model was misspecified by dropping the quadratic
form. It was found that when using a cutoff value of 0.95
(Hu & Bentler, 1999), CFI and TLI performed well for both
the correct and the misspecified models with five measure-
ment occasions and n � 250. With eight measurement occa-
sions, the CFI and TLI could capture 100% of misspecified
models even with n¼ 100. Using a cutoff value of 0.06 (Hu
& Bentler, 1999), RMSEA worked better in capturing mis-
specified models but were more likely to reject the correct
model for the five-occasion model with n¼ 250. Leite and
Stapleton (2011) generated data from different nonlinear
growth trajectories, including linear-linear piecewise, with
six measurement occasions, and fit a linear model to them.
Different sample sizes and degrees of misspesification were
examined. They found that CFI and TLI tended to retain
most of the misspecified models when the cutoff value of
0.95 was used, regardless of sample size or severity of mis-
spesification. RMSEA, on the other hand, was able to detect
misspecification 90% of the time when the cutoff value of
0.06 was used.

For piecewise LGMs, another typical form of misspecifi-
cation is knot misplacement. Ning and Luo (2017) con-
ducted a simulation study to investigate the impact of
misplacement of the knot on model fit. The data were gen-
erated based on a linear-linear piecewise model with seven

measurement occasions. The knot was placed at one of the
following four occasions in the data generation process: 3,
3.5, 4, and 5. In the analysis model, the knot was fixed at
the third occasion, which created four scenarios: no misspe-
cification, misspecification of 0.5, 1, or 2 occasions. They
found that when data followed the normal distribution,
RMSEA, CFI and TLI all performed well with the true
model. However, none of them were sensitive to the knot
misplacement, regardless of sample size or severity of mis-
specification. When data were skewed, RMSEA became
more sensitive as the severity of misspecification increased,
while CFI and TLI still failed to capture this type of
misspecification.

Only a few studies have focused on the performance of
Bayesian model fit and model selection indices.
Comparisons between PPP-value and approximate fit indi-
ces in confirmatory factor analysis models can be found in
Winter (2021). She concluded that the PPP-value was more
sensitive to misspecification (e.g., reducing number of fac-
tors; fixing cross-loading to 0) than BCFI and BTLI.
Asparouhov et al. (2015) recommended using DIC over BIC
when comparing Bayesian structural equation models.
Research on the performance of these indices in Bayesian
LGMs has been even more limited. Only until recently, one
study (Winter & Depaoli, 2022) systematically investigated
how Bayesian model fit indices, PPP-value, BRMSEA, BCFI,
BTLI, as well as the model selection indices, BIC and DIC,
were sensitive to three types of misspecification (i.e., con-
straining measurement errors to be equal; fixing variance of
quadratic slope at 0; and completely dropping quadratic
slope) in a latent quadratic model. They adopted the com-
monly used cutoff values for good fit: PPP-value >.05,
BRMSEA <.06, and BCFI and BTLI >.95. They also
assessed the impact of sample size, missing data and prior
distribution on the performance of these indices. The PPP-
value showed the best performance, except for n¼ 50.
BRMSEA worked adequately well, unless when n¼ 50 or
100, or diverging (i.e., wrong) priors were used. BCFI and
BTLI were the least sensitive to model misspecification,
even with a large sample size such as 500. Neither BIC nor
DIC preferred the models with misspecification in quadratic
slope, however, both of them tended to favor the model
with constrained measurement errors over the correct
model. As sample size increased, the DIC became more
likely to select the correct model, while the selection of BIC
was not impacted by sample size, at least examined in this
study. Prior specifications did not influence the performance
of the BIC or DIC. The negative impact of missing data on
all the indices was only observed when there were 50% of
missing values on four measurement occasions. This body
of research points toward the need for reliable measures
that can detect a variety of model misspecifications.
However, there is still a complete lack of information about
performance of these indices for Bayesian piecewise LGMs.
In what follows, we detail a simulation study aimed at
uncovering performance and ability to detect specification
errors in this modeling context.
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4. Simulation Design

We conducted a Monte Carlo simulation study to evaluate
the performance of several Bayesian (approximate) model fit
indices in piecewise LGMs in detecting misspecification in
knot placement and examine the impact of priors on their
performance. In addition, we examined the performance of
two Bayesian model comparison indices (the BIC and DIC).

4.1. Population Models

We focused on a linear-linear Bayesian piecewise LGM with
seven measurement occasions and a slope change at the
fourth occasion (Figure 1). The population values were
adopted from those in Ning and Luo (2017).

4.2. Magnitude of the Change in Slope

Based on Kwok et al. (2010), we considered 3 levels in the
magnitude of change in the linear slope. We first fixed the
slope of the first segment of growth at 0.5, then the second
slope was set at 0.56, 0.66, or 0.75 to reflect “small,”
“medium,” and “large” changes. These trajectories are pic-
tured in Figure 2. The changes between the two linear
slopes were computed as the product of the standardized
effect size (0.2, 0.5 and 0.8) based on Cohen (1988) and the
standard deviation of the first linear slope (

ffiffiffiffiffiffi
0:1

p
), following

the Raudenbush and Xiao-Feng (2001) effect size equation.

4.3. Knot Placement

We manipulated knot placement at 4 levels to reflect com-
mon scenarios/mistakes seen in applied studies. In the ana-
lysis model, the knot was placed at the true location (correct
model), one time point before the true location, one time
point after the true location, or completely ignored (i.e., no
knot; the two-piece model then reduced to a single-piece lin-
ear model). Overall, there were one correctly specified model
and three misspecified models (regarding knot location). The
two factors, knot placement and magnitude of the change in
the growth rate, defined the levels of misspecification.

4.4. Sample Size

Sample size is a consistent factor tied to the performance of
model fit measures implemented within SEM, including
Bayesian SEM (see e.g., Garnier-Villarreal & Jorgensen,
2020; Shi et al., 2019). As a result, it is important to exam-
ine the performance of these indices for piecewise LGMs
across a range of sample sizes in order to determine an
accurate picture of their performance. We included 5 levels
of sample size: 30, 75, 150, 300 and 500, which represent a
reasonable range of sample sizes that are commonly seen in
practice. The smallest sample size n¼ 30 was chosen follow-
ing previous simulation studies (e.g., Kwok et al., 2010;
Ferron et al., 2002; Keselman et al., 1998) in order to
explore the impact of different prior distributions in
extreme circumstances.

4.5. Prior Specification

We examined the impact of different prior specifications in
order to gain a complete understanding of how priors
impact the ability of the model fit and selection indices to
detect model misspecification. We examined the following
prior conditions for the means of the latent intercept and
slopes: (1) diffuse; (2) informative accurate; (3) informative
inaccurate; (4) weakly informative accurate; and (5) weakly
informative inaccurate. All these priors followed the normal
distribution, with a mean hyperparameter l and a variance
hyperparameter r2: For the diffuse conditions, we used the
default prior specification in Mplus, in which l¼ 0, and r2

¼ 1010. The informative priors were those with high preci-
sion, in which the variance hyperparameters were set at
small values. In contrast, the weakly informative priors were
those with large variance hyperparameters (but still much
smaller than the diffuse condition). We also manipulated
the accuracy of the priors by centering them at the true
population values (accurate) or shifting them upward
(inaccurate). Specifically, the accurate informative priors
were centered at the true population means, and the vari-
ance hyperparameters were set at 0.1 times the true popula-
tion means. The inaccurate informative priors had the same
variance hyperparameters as the accurate priors, while their
means were shifted upward by 3 times the square root of
the variance hyperparameters (3r). We specified the weakly
informative priors (accurate and inaccurate) in a similar
manner. The only difference was that for both weakly
informative priors, their variance hyperparameters were set
at 0.5 times the true population means. Table 1 shows the
values of the hyperparameters for all these priors. The
Mplus default priors were used for all other parameters.

4.6. Data Generation and Bayesian Estimation

We used Mplus version 8.6 (Muth�en & Muth�en, 1998–2017)
for data generation and estimation via the Bayesian frame-
work. For Bayesian analyses, we implemented the Gibbs
sampler with 2 chains each consisting of 10,000 iterations.

Table 1. Normal distribution settings for latent growth factor means: hyper-
parameter values for simulation conditions.

Mean Variance
Factor Hyperparameter Hyperparameter

Informative prior settings
Accurate location
Intercept 2.500 0.250
Slope 1 0.500 0.050
Slope 2 0.560 0.056

Inaccurate location
Intercept 4.000 0.250
Slope 1 1.171 0.050
Slope 2 1.270 0.056

Weakly informative prior settings
Accurate location
Intercept 2.500 1.250
Slope 1 0.500 0.250
Slope 2 0.560 0.280

Inaccurate location
Intercept 4.000 1.250
Slope 1 1.171 0.250
Slope 2 1.270 0.280
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We found that this number of iterations was enough after
testing several chain lengths and visually checking conver-
gence (trace plots were uploaded in the online material).
The first half of the iterations was discarded as the burn-in
phase of the chain. Convergence was monitored using the R̂
convergence diagnostic (Vehtari et al., 2019).

4.7. Outcomes of Interest

We first examined the values of the model fit indices, PPP,
BRMSEA, BCFI, and BTLI, in all conditions to assess how
they performed in detecting different levels of misspecifica-
tion, and how their performance was impacted by prior spe-
cification and sample size. In addition, we used 90%
credible intervals (CIs) of the approximate fit indices
(Asparouhov & Muth�en, 2021) as an assessment to evaluate
their sensitivity to misspecification. If the entire 90% CI fell
below .06 for BRMSEA, or above .95 for BCFI or BTLI,
then the model fit is “good.” If the entire 90% CI fell on the
other side of the cutoff values, it indicates a “poor” model
fit. If the cutoff value is within the 90% CI, the model fit is
“inconclusive.” We then computed the proportion of repli-
cations in which the model fit was “good,” “inconclusive,”
or “poor.”3 For the correctly specified model, we expect to
see a high proportion of good fit. Similarly, for the misspe-
cified models, the higher proportion of poor fit an index
produced, the more sensitive it was to misspecification. For
the model selection indices, BIC and DIC, we assessed the
model selection rates across various conditions to examine
how often they favored the correct model over a misspeci-
fied model. The difference between the indices from the two
models being compared was also computed.

5. Simulation Results

The BCFI and BTLI results were very similar, so we will
only be reporting the BCFI results for the sake of space.4 To
assess chain convergence, we extracted R̂, and we used cut-
off criteria of R̂<1:05 as an indicator of convergence. On
average, 94.51% of all replications had a maximum R̂ <
1.05. We included all converged replications in the results
that follow.

5.1. Model Fit: Using Index Values as an Assessment

Model fit measures are commonly used as tools for identify-
ing model misspecification. As misspecification worsens, it
would be expected that the model fit indices would reflect
this worsening. Figures 3–5 present boxplots of the index

values across all conditions of correct and misspecified
models. Within each of these figures, the columns represent
the slope rate of the second segment for the piecewise
model, and the rows represent sample size conditions
(smallest on top and largest sample size on bottom). The y-
axis represents the model fit index value. Finally, the x-axis
represents the different prior conditions examined, and
the boxes represent model misspecification (correct
and incorrect).

5.1.1. PPP
Results for the PPP-value are in Figure 3, and each plot
includes two horizontal lines. The solid horizontal line rep-
resents the PPP-value of 0.5, which would indicate optimal
model fit (Asparouhov & Muth�en, 2010). The dashed hori-
zontal line is set at PPP ¼ 0.05 to showcase a common cut-
point that applied researchers may implement to determine
model misfit (Asparouhov & Muth�en, 2010; Zyphur &
Oswald, 2015). We will use this cut-point as an illustration
for interpreting the results, but it is important to note that
there is no single cutoff value that should be used across all
Bayesian modeling situations implementing the PPP proce-
dure–we use this value for convenience in interpreting
results. If PPP is working as expected, then correctly speci-
fied models should hover closer to the PPP ¼ 0.5 value
(solid horizontal line) and misspecified models should hover
around or below the PPP ¼ 0.05 value (dashed horizon-
tal line).

In order to become oriented with the PPP findings, start
by looking at the top-left corner for the slope of 0.56 and
n¼ 30. The correct (“true location”) model and the two
models with the knot placed one time-point before and after
the true location (i.e., the three lightest shaded boxes) all
look comparable to one another. The correct model (lightest
shade) is not hovering around the expected value of PPP ¼
0.5. In fact, the ignored knot condition (darkest shade) has
more mass surrounding the 0.5 line than the other three. In
addition, none of the cells (across any of the prior condi-
tions) were flagged as representing misfit with the dashed
cutoff value. These results indicate that the PPP cannot
properly classify the smallest slope and smallest sample size
condition with respect to the cutoffs typically implemented.
Moving over to the other extreme cell, located in the bot-
tom-right corner, results appear as expected. The correctly
specified model with the true knot location is hovering over
the PPP ¼ 0.5 line perfectly across prior conditions. In add-
ition, the ignored knot condition is clearly below the PPP ¼
0.05 line, and the inaccurate knot location boxes (misspeci-
fied models, but not as egregious as ignoring a knot
altogether) hover over that line to a large degree.

Zooming out, there are many general findings that can
be pinpointed here. As sample size increases from small to
large (i.e., looking down the rows), the PPP is better able to
distinguish between correct and misspecified models, pin-
pointing the ignored knot condition as containing the larg-
est degree of misfit. In looking at the columns, the size of
the slope also plays a role in overall findings. The PPP was
better able to identify misfit in the knots when the second

3Although we implemented a 90% CI here, it is important to note that other
interval widths could have also been implemented. It is possible that
substantive conclusions would differ with the implementation of a different
interval width (e.g., more inconclusive decisions may be made if wider widths
are used). However, we selected 90% to be consistent with the defaults in
Mplus. We felt that this would be the most informative setting because it
maintains consistency with how the methods will likely be applied in
the literature.
4For full results, please see the OSF page for this project: https://osf.io/myrds/
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segment’s slope was larger (right column) as compared to a
smaller slope (left column). Regarding prior specifications,
results across the priors are largely comparable within each

subplot, with one interesting exception. Focusing on the
“informative inaccurate” prior setting (middle prior condi-
tion in each subplot), it is clear that this prior is pulling the
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Figure 3. PPP across simulation conditions.
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Figure 4. BCFI across simulation conditions. Note that the y-axis has been truncated at 0.5 to aid in interpreting the patterns across all cells in the figure.
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PPP downward, especially under smaller sample sizes. In
other words, the inaccurate (but precise) priors add to the
degree of misfit for all small sample size conditions.
Otherwise, there is no appreciable influence of prior specifi-
cation on the PPP results. For sample sizes under 500, it is
more difficult for the PPP to identify misfit according to a
strict cutoff (e.g., PPP < 0.05 represents misfit).

5.1.2. BCFI (and BTLI)
Figure 4 contains results for the BCFI. The figure is read
much the same way as with the PPP, with one notable dif-
ference. We have added a horizontal line at BCFI ¼ 0.95 to
illustrate a common cutoff that applied researchers use to
determine when a model should be rejected or not (values
< 0.95 would indicate misfit under this common cutoff;
Garnier-Villarreal & Jorgensen, 2020; Asparouhov &
Muth�en, 2021). An additional point to note is that the y-
axis has been zoomed in so that the lowest number plotted
on this axis is 0.5 (i.e., we did not start the y-axis at a value
of 0). Notably, some of the most extreme outliers for n¼ 30
were cut off with this truncated y-axis. However, this scale
allows for a more detailed (zoomed in) viewed of the results
for the larger sample sizes. Overall, there is a clear sample
size effect in this figure. Using a strict cutoff value of 0.95
illustrates that none of the models (even the correctly speci-
fied model) reliably met that cutoff for n¼ 30 and, for sam-
ple sizes n¼ 75 and above, the cutoff is not able to reliably
identify mis-specifications; with the exception of the bottom
right box (representing the most “extreme” levels of misspe-
cification with a slope of 0.75 and the largest sample size).

Overall, the BCFI (and BTLI–pictured in the online mater-
ial) were not informative about misfit with the use of a 0.95
cutoff value. In addition, there did not appear to be any
meaningful differences in the prior specifications imple-
mented for the BCFI.

One interesting element to note, is that it appears that
under some conditions BCFI (and BTLI) can be used for
model selection purposes. Take, for example, the sample
sizes > 30 and look at the four adjacent boxplots for any
prior condition. The median BCFI is always larger, even if
only slightly so, for the true model. In turn, the lowest
median BCFI is always associated with the condition ignor-
ing the knot altogether. This implies that the BCFI can be
used within a specific prior and sample size condition to
help determine the true model. The results are most exag-
gerated for the largest sample size and the largest slope con-
dition (i.e., bottom right plot in the figure). We expand on
this concept of using the indices for model selection in the
Discussion section.

5.1.3. BRMSEA
Figure 5 shows the results for the BRMSEA. In this figure,
we added a horizontal line at 0.06 to showcase when a
model would be rejected if this cutoff point was used (values
> 0.95 indicate misfit; Garnier-Villarreal & Jorgensen, 2020;
Asparouhov & Muth�en, 2021). Overall, the BRMSEA was
not able to identify correct versus incorrect models at
n¼ 30. As sample sizes increased, the ability to detect the
correct model (lightest box) from the model with the
ignored knot (darkest box) became clearer. However, using
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Figure 5. BRMSEA across simulation conditions.
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the cutoff value, the misspecified knot location conditions
(middle two boxes within each group of boxes) were not
identified as misspecifications. Regarding results across col-
umns, the slope condition of 0.75 (right column) was the
only one to reliably identify misfit for the “ignored knot”
condition. The results indicate that the smaller changes in
slope (left and middle columns) cannot be identified by the
BRMSEA as misfit (even with explicit knot misspecifica-
tions). Just as with the previous indices, there were no not-
able differences in the priors specified.

5.2. Model Fit: Using 90% Credible Intervals as
an Assessment

The BCFI, BTLI, and BRMSEA all produce credible intervals
(CIs) that can be used as another mechanism for assessing
model fit results. One way that these approximate fit CIs
can be used is to classify fit as being “good,” “inconclusive,”
or “poor.” Examining the CI can potentially be more
informative (or flexible) as compared to a single cutoff
value. Figures 6 and 7 contain the CI results for the BCFI
and BRMSEA, respectively; BTLI results can be found
online and were comparable to BCFI. These two figures
contain stacked bars, which represent the proportion of rep-
lications that resulted in “good,” “inconclusive,” or “poor”
model fit. The figures are set up as follows. Columns repre-
sent the slope of the post-knot segment and rows represent
sample size. The x-axis represents the specification of the
knot location: true location, one point earlier, one point
later, or when the knot is completely ignored. The y-axis
represents the proportion of replications falling in either

“good,” “inconclusive,” or “poor” classification based on the
90% CI. Specifically, the “good” category is defined by a
90% CI that is entirely in the range of BCFI � 0:95 or
BRMSEA � 0:06: The “poor” category is defined by an
interval that is entirely in the range of BCFI < 0.95 or
BRMSEA > 0.06 (see, e.g., Asparouhov & Muth�en, 2021;
Winter & Depaoli, 2022). The “inconclusive” category has
an interval that contains the cutoff value, where part of the
interval is above and the rest of the interval is below that
cutoff value. Given that there was very little difference in
results across different prior settings, the results were col-
lapsed across prior specifications.

The results were quite similar across BCFI and BRMSEA,
so we will focus on narrating BCFI in Figure 6. Looking
across sample sizes (rows), there are different patterns of per-
formance. For n¼ 30, the great majority of replications had
results that were either “inconclusive” or “poor,” with little-
to-no replications classified as “good.” Sample sizes needed to
be � 75 in order for CIs to fall within the “good” category.
As sample sizes increased beyond n¼ 75, the proportion of
replications falling in the “good” category also increased. At
the largest sample size of n¼ 500, and the smallest slope of
0.56 (bottom left corner plot), almost all of the replications
produced results indicating “good” fit according to the 90%
CI. However, as the slope value increased to 0.75 (bottom
right corner plot), the ignored knot condition indicated a
high degree of misfit with most replications indicating “poor”
fit according to the 90% CI. Overall, findings according to
the CI indicate that very few replications would be classified
as “good” fit at sample sizes n � 75, even for the true model.
As sample size increased, however, even the misspecified
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Figure 6. BCFI 90% credible interval rejection rates.
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models with a knot placed at the wrong location were classi-
fied as well-fitting models for most replications. Ignoring the
knot completely was classified to a larger extent as misfit (or
“inconclusive”), especially under larger sample sizes and the
two larger slope conditions.

5.3. Model Comparison Using the BIC and DIC

Tables 2 and 3 contain model comparison results for the
BIC and DIC, respectively. The main horizontal blocks of
these tables contain information for each of the three post-
knot slope conditions: 0.56, 0.66, and 0.75. Results are pre-
sented by sample size (rows) and prior specification (col-
umns). The values in the table showcase two types of
information: selection rates and degree of difference in the
information criteria. The numbers in the tables represent
the percent of replications where the true model was
favored by the index as compared to one of the three fol-
lowing misspecified models: knot location was one time-
point earlier than the true model, knot location was one
time-point later than the true model, or the knot was com-
pletely ignored. Higher percentages in the table represent
conditions where the index was able to properly identify the
true model at a higher rate. The second type of information
in the table showcases the degree of the difference in infor-
mation criteria. It is not informative enough to simply say
that Model 1 had a smaller BIC value as compared to
Model 2. The degree of separation between the index values
is also an important piece of information to consider. For
example, a researcher would want to know if the BIC com-
parisons were Model 1 BIC ¼ 10 and Model 2 BIC ¼ 10.1,

versus if the BIC comparisons were Model 1 BIC ¼ 10 and
Model 2 BIC ¼ 1000. These two scenarios represent differ-
ing magnitudes of difference between the BIC values for
competing models. In order to highlight this layer of results,
we have bolded selection rate values where the average dif-
ference between the information criterion values was greater
than 5. Non-bold values indicate that selection rates were
based off of an average point differential that was less than
5 (i.e., the selection was based on a narrower gap between
the information criterion values).

Results for the BIC, found in Table 2, presented a few
important findings that we will highlight here. The most
striking results surround the patterns of bold values, which
showcase a larger discrepancy between the BIC values
yielded for the competing models. In comparing results
across the columns, the true model and ignored-knot model
(right column) had larger discrepancies in the BIC values as
compared to the other two columns (true model versus a
model with an incorrect knot placement). The cells with the
largest discrepancies and the largest selection rates of the
true model are across the bottom of the table. Specifically,
the largest sample sizes (n � 300) for the largest slope value
(0.75) had consistently larger selection rates that are in bold
font. The moderate slope of 0.66 showed similar patterns
for n � 300 as well. These cells represent the conditions
where the BIC was most decisive in properly detecting the
true model when compared to a misspecified model.
Overall, the BIC did not pinpoint specification errors accur-
ately for smaller sample sizes (<300), even with severe mis-
specifications (e.g., bottom right panel, representing slope ¼
0.75 and ignored knot).
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Figure 7. BRMSEA 90% credible interval rejection rates.
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Results for the DIC can be found in Table 3. There are
many aspects of the DIC results that are similar to the per-
formance of the BIC. However, we will highlight a few
instances where results differed across the two indices.
Overall, the DIC selection rates appeared to be comparable,
and in some cases higher than the BIC rates. For example,
the right column for the true model versus the ignored-knot
model, the DIC selection rates are much higher as compared
to the BIC selection rates in Table 2. This difference between
the BIC and DIC in the right-hand column is most notable
in the smaller sample sizes (n< 300). In a side-by-side com-
parison, it appears that the DIC is more consistently able to

select the true model as compared to the ignored-knot model.
The performance of the DIC appears comparable to the BIC
when examining the other two columns (comparing a true
model to a model with misspecified knot placement). In add-
ition, both indices show an improved ability to detect misspe-
cification as sample sizes increase.5

Table 2. BIC selection rates: comparing the true model to three misspecified models.

True model vs. one point earlier True model vs. one point later True model vs ignored knot

n DIF I-A I-INA WI-A WI-INA DIF I-A I-INA WI-A WI-INA DIF I-A I-INA WI-A WI-INA

Slope ¼ 0.56
30 53.8 54.2 49.3 53.7 53.6 53.1 53.0 67.1 53.0 53.9 0.4 0.4 0.1 0.4 0.4
75 61.3 61.4 60.1 61.4 61.1 57.3 56.9 65.0 56.9 57.8 1.4 1.4 1.3 1.4 1.4
150 67.8 67.8 66.9 67.8 67.8 65.3 65.3 69.1 65.3 65.6 4.7 4.7 4.6 4.7 4.7
300 76.6 76.6 76.6 76.6 76.6 75.3 75.3 76.4 75.3 75.5 12.6 12.6 12.2 12.6 12.6
500 82.5 82.5 82.6 82.5 82.5 84.2 84.2 84.7 84.2 84.2 33.3 33.3 33.1 33.3 33.3
Slope ¼ 0.66
30 55.5 56.5 56.0 55.4 55.6 57.1 57.0 68.4 57.2 58.4 1.5 1.5 0.8 1.5 1.5
75 68.7 68.8 68.1 68.7 68.6 65.9 65.8 70.5 65.9 65.9 5.6 5.6 4.8 5.6 5.6
150 76.0 76.1 76.1 76.0 76.0 75.1 75.0 77.9 75.1 75.2 20.7 20.7 20.3 20.7 20.7
300 85.5 85.5 85.5 85.5 85.5 84.2 84.2 84.8 84.2 84.3 55.9 55.9 55.7 55.9 55.9
500 92.5 92.5 92.6 92.5 92.6 92.8 92.8 92.9 92.8 92.8 89.3 89.3 89.1 89.3 89.3
Slope ¼ 0.75
30 60.8 61.9 63.1 61.0 61.3 61.5 61.7 71.4 61.4 62.9 4.8 4.9 3.0 4.8 4.8
75 76.5 76.6 77.1 76.5 76.4 74.4 74.3 77.6 74.4 74.5 22.6 22.8 20.7 22.6 22.5
150 83.5 83.5 84.0 83.5 83.5 86.8 86.8 87.2 86.8 86.8 57.8 57.9 57.1 57.8 57.7
300 93.5 93.5 93.5 93.5 93.5 94.2 94.2 94.2 94.2 94.2 96.1 96.1 95.8 96.1 96.1
500 97.6 97.6 97.6 97.6 97.6 98.2 98.2 98.2 98.2 98.2 99.9 99.9 99.9 99.9 99.9

Note. n is the sample size. DIF is the diffuse prior. I-A is the informative-accurate prior. I-INA is the informative-inaccurate prior. WI-A is the weakly informative-
accurate prior. WI-INA is the weakly informative-inaccurate prior. Numbers in the table represent selection rates in terms of the percentage of replications where
the true model was favored over the misspecified model. The degree of difference in information criterion values is captured through bold values. For interpret-
ation purposes, we bolded selection rates for conditions where the difference in information criteria values between the true model and misspecified model
was greater than 5 points.

Table 3. DIC selection rates: comparing the true model to three misspecified models.

True model vs. one point earlier True model vs. one point later True model vs ignored knot

n DIF I-A I-INA WI-A WI-INA DIF I-A I-INA WI-A WI-INA DIF I-A I-INA WI-A WI-INA

Slope ¼ 0.56
30 52.7 50.1 46.2 51.0 51.2 53.1 50.7 63.7 52.1 53.7 17.5 22.6 11.0 19.0 17.8
75 61.7 59.5 57.7 60.8 60.5 53.0 52.0 62.2 52.5 53.4 31.2 33.0 29.9 31.7 31.7
150 65.8 65.2 64.4 65.6 65.3 65.2 64.4 69.5 64.7 65.3 59.8 61.2 58.3 60.0 59.8
300 76.2 75.8 75.9 76.1 76.1 74.9 74.8 76.3 74.8 74.9 84.2 84.4 83.9 84.2 84.2
500 81.1 81.1 81.4 81.1 81.2 84.4 84.4 84.7 84.4 84.4 96.8 96.8 96.5 96.8 96.8
Slope ¼ 0.66
30 55.8 52.4 52.7 54.1 54.4 56.7 55.5 64.9 56.4 57.3 28.5 34.6 20.5 30.0 29.0
75 68.5 67.3 67.2 68.2 68.0 63.6 63.4 68.3 63.6 64.1 53.4 55.8 52.3 54.0 54.0
150 75.7 75.2 75.2 75.4 75.4 76.3 75.9 77.9 76.3 76.5 85.5 86.4 84.6 85.6 85.6
300 85.4 85.3 85.5 85.3 85.4 84.4 84.4 85.0 84.4 84.4 98.7 98.8 98.7 98.7 98.7
500 92.0 92.0 92.0 92.0 92.0 93.3 93.3 93.3 93.3 93.3 99.9 99.9 99.9 99.9 99.9
Slope ¼ 0.75
30 61.2 60.0 61.3 60.8 60.7 62.3 60.9 68.8 61.8 62.7 44.8 49.2 36.5 45.8 45.0
75 76.4 75.5 75.8 76.3 76.3 72.7 72.7 75.9 72.8 73.0 77.3 79.1 76.8 77.9 77.9
150 84.0 83.5 83.8 83.7 83.7 86.4 86.4 86.8 86.4 86.6 98.8 98.9 98.8 98.8 98.8
300 93.6 93.4 93.8 93.6 93.6 94.0 94.0 94.0 94.0 94.0 100.0 100.0 100.0 100.0 100.0
500 97.6 97.6 97.6 97.6 97.6 98.2 98.2 98.2 98.2 98.2 100.0 100.0 100.0 100.0 100.0

Note. n is the sample size. DIF is the diffuse prior. I-A is the informative-accurate prior. I-INA is the informative-inaccurate prior. WI-A is the weakly informative-
accurate prior. WI-INA is the weakly informative-inaccurate prior. Numbers in the table represent selection rates in terms of the percentage of replications where
the true model was favored over the misspecified model. The degree of difference in information criterion values is captured through bold values. For interpret-
ation purposes, we bolded selection rates for conditions where the difference in information criteria values between the true model and misspecified model
was greater than 5 points.

5For the interested reader, we have added an additional plot in the online
supplementary material. This plot showcases how the PPP and the DIC align
with respect to model evaluation. Indeed, the more misspecified models
(corresponding to lower PPP values) were selected less frequently by the DIC
as compared to the true model (which corresponded to a higher PPP overall).
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6. Discussion

We investigated the performance of various Bayesian
(approximate) model fit and comparison indices via simula-
tion. Our focus was on the piecewise LGM, which is an
important model used to capture segmented growth over
time. We set out to answer two main questions surrounding
model and prior specification for this modeling situation.
We will discuss each of these questions next and follow-up
with recommendations for applied researchers, as well as
future research directions.

6.1. Model Misspecification

Research Question #1: (Model Misspecification) How well
do Bayesian model fit and asssessment measures detect
model misspecification for piecewise LGMs?

We examined several different model fit and assessment
indices implemented in the Bayesian estimation framework.
As detailed in the Results section, each index carried with it
different nuances regarding performance and ability to
properly detect model misspecification. However, one global
pattern that was uncovered in the simulation study was that
the indices (speaking collectively, as a group) tended to per-
form better under conditions where the model specification
error was more extreme (e.g., ignoring a knot when the
slope has a larger shift in the second segment of the growth
trajectory). It was more difficult for these indices to properly
identify misspecification in knot placement as compared to
the situation where the knot was ignored completely.

In examining performance for each of the indices indi-
vidually, we can draw the following conclusions. Regarding
model fit, it appears that the PPP is a more reliable tool as
compared to the approximate fit indices explored here. The
PPP was especially useful under cases of larger sample sizes,
and it struggled with the smallest sample size conditions
explored here. One potentially alarming finding here was
that, as sample sizes increased, the approximate fit measures
tended to indicate that all models (even the misspecified
models) fit well. Early recommendations (Asparouhov &
Muth�en, 2021) indicated that the approximate fit measures
were not well suited for smaller sample sizes. However, our
findings corroborated that of Winter & Depaoli (2022) in
that the indices (especially BCFI/BTLI) were not particularly
helpful for larger sample sizes when examining the fit of an
individual model. In addition, the approach using 90% CIs
as an assessment tool (i.e., for BCFI, BTLI, and BRMSEA)
appeared to be best under the smaller sample size condi-
tions or conditions with the most extreme misspecification
(i.e., knot ignored completely, and the largest slope condi-
tion of 0.75). The CI approach was not reliable outside of
those specific conditions, and it is clear that the perform-
ance is tied to other factors (e.g., sample size) outside of
model misspecification.

The current investigation also uncovered that the DIC is
a more reliable index for properly identifying specification
errors as compared to the BIC. However, there were import-
ant limitations uncovered that were tied to sample size and
severity of specification error. The DIC performed best

under the highest sample sizes (� 300) and under condi-
tions where the knot was completely ignored. It was more
difficult to properly detect the specification error when the
knot was simply misplaced, as opposed to ignored.

6.2. Prior Specification

Research Question #2: (Prior Specification) Does prior spe-
cification (e.g., informativeness and accuracy of the prior)
have an impact on the overall performance of model fit
indices for piecewise LGMs?

The results obtained in this simulation study indicated
that prior settings had little to do with the overall perform-
ance of the indices examined here. Specifically, diffuse priors
performed comparably to subjective priors that were speci-
fied to be either accurate or inaccurate, and either inform-
ative or weakly informative. Although previous research has
indicated that prior specification is an important element in
properly estimating growth factor means and variances in
LGMs (see e.g., Depaoli, 2013; van de Schoot et al., 2018;
Depaoli et al., 2017; Smid et al., 2020), it was not a key
element to detecting model misfit in this study. At least for
this current investigation, prior settings do not appear to be
much of a concern regarding the performance of the
Bayesian model fit and assessment indices examined here.

6.3. Recommendations for Applied Researchers

The piecewise LGM can be a powerful tool, but it is possible
to misinterpret or misrepresent substantive findings if the
model is specified incorrectly. The current simulation study
uncovered many important findings that can be used to
help construct practical guidelines for using Bayesian model
fit and comparison indices in this modeling context. All of
the indices examined here have important limitations that
were detailed in the Results section. Our overall assessment
is that the PPP appears to be a more reliable fit index as
compared to the approximate fit measures when a single
model is being examined. Within the approximate fit meas-
ures, the BRMSEA appears to perform better than the BCFI
and BTLI (which were largely comparable to one another).
Regarding the model comparison indices, the DIC had more
impressive selection rates as compared to the BIC, but nei-
ther of the indices worked well with smaller sample sizes.
Regarding specific recommendations, we have an alternative
approach that we would like to propose next.

These findings indicate that it is much more difficult to
detect an inaccurate knot location as compared to a missing
knot. However, the accuracy of the knot location is of
utmost importance to applied researchers implementing this
model. Our advice for assessing the accuracy of the knot
location is to estimate competing models and implement the
full collection of indices provided here to help determine
the optimal model. One approach that might get around the
limitations of the (approximate) fit measures, is to
extend their use and consider them as being helpful model
comparison tools. Specifically, when examining the results
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presented in Figures 3–5, a clear picture of “model
comparison” emerges.

For example, when used as a model fit measure for a sin-
gle model, results for the BCFI are not informative once
sample sizes exceed 75. Given that this index is not recom-
mended for smaller sample sizes (Asparouhov & Muth�en,
2021), and it is not particularly helpful in a model fit sense
when sample sizes are larger (see Results section), it is rea-
sonable to critically question its overall utility in Bayesian
modeling. Specifically, under larger sample sizes for which
the BCFI is typically recommended, all of the models met
the conventional cutoff indicating “good” model fit. The
cutoff is not able to help distinguish a well-fitting model
from a misspecified model. This use of the index and cutoff
is unhelpful to the applied researcher looking to identify
model misspecifications.

However, the index becomes informative if we stop using
it as an index for assessing a single model and start examin-
ing it in a model comparison manner. Assume that a
researcher fit four models to sample data as follows: a
model with the knot at time-point 4 (the true model in this
case), a model with the knot at time-point 3, one with the
knot at time-point 5, and one without a knot. If these mod-
els were being examined as standalone models, then the
BCFI is not helpful at all because all of them “fit” according
to the conventional cutoff of 0.95. However, the researcher
can compare the BCFIs for the four competing models, and
the largest BCFI value would point toward the correct
model in this instance (i.e., the model with the knot location
at time-point 4). We see potential value in repurposing
these approximate fit indices that are conventionally used
for assessing fit of a single model into a model comparison
context. It may be that the indices will better serve the goals
of applied researchers if implemented in this way. However,
we also recommend the use of the full collection of indices
to examine consistency in the recommendations each index
provides. Model fit and assessment can be viewed as a puz-
zle, with multiple pieces needed to help identify the optimal
model. It would be unwise to rely on any single model fit
or comparison measure during model selection, and that is
especially true for these Bayesian indices.

6.4. Future Research Directions

Collectively, we are only at the beginning of understanding
the potential role that the new Bayesian approximate fit
measures can play in Bayesian modeling, as well as how
they intertwine with the traditional Bayesian fit and com-
parison tools that have longstanding use in the field. There
are many layers that still need to be investigated regarding
the potential utility these indices have within latent variable
modeling, and we highlight the major areas here.

The current simulation study provided a clear picture of
the limitations and potential use of these indices in terms of
piecewise LGMs. However, that picture may not remain
consistent across all modeling contexts implementing the
piecewise LGM. For example, we know that the general per-
formance of (non-piecewise) LGMs in the Bayesian

framework is tied to the complexity of the model. Linear
LGMs without knots are relatively simple and straightfor-
ward to accurately estimate using Bayesian methods (see
e.g., Zhang et al., 2007). However, once the model increases
in complexity, for example, with mixtures or different
degrees of nonlinearity included, the prior distributions
have been repeatedly shown to make a large difference in
overall performance of the estimation framework (see e.g.,
Depaoli, 2013, 2014; Lock et al., 2018).

In addition, the current investigation considered piece-
wise LGMs. Although these are important tools within the
longitudinal latent variable modeling framework, we also
want to note that there are other models that can be of
potential use when examining nonlinearity within growth
trajectories. Although beyond the scope of the current inves-
tigation, models such as the latent basis model (see e.g.,
McNeish, 2020) could also be used in a case where the
researcher was not sure about the functional form of the
growth trajectory. Further investigation into how well such
models can compensate for misspecification of piecewise
LGMs would be useful in providing a full picture of proper
growth trajectory recovery.

The field simply does not yet know if that same pattern
holds for these Bayesian fit indices. Specifically, the current
investigation showed that priors had no measurable influ-
ence on index-performance. However, it is important to rec-
ognize that this investigation used the simplest form of
piecewise LGMs. The influence of priors would likely be
greater with increased model complexity (e.g., more knots,
the presence of latent classes, nonlinearity in the segments,
and the presence of missing data), and we do not yet know
the impact of priors on the fit indices in these more com-
plex modeling situations. This is, in our view, the biggest
unknown that should be extensively examined before wide-
spread adoption of these indices in applied piecewise
LGM settings.
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